SEES008 Example exercises

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

SEES008

Example exercises

Quantitative Methods 24/25

This document contains more question sets than the final exam. Questions in this document can be used as reference for the form and the difficulty level. It aims to have a full coverage to all topics taught in this module.

Question set 1: Probability table

A market research group specialize in providing assessments of the prospects of shopping

centre. In a city famous for tourism, the group categorize that 60% of the tourism shops are successful, and 40% are unsuccessful. The group assess products as good, fair and poor. In those successful shops, the products are assessed as good for 70%, fair for 20% and poor for 10%. For those shops turned out to be unsuccessful, the products are good for 20%, fair for 30%, poor for 50%.

Let event G = the quality of product as good

Let event S = the prospect of a store is successful

Answer the following questions:

1.1. Draw a probability table which include events G and event S with corresponding probabilities

1.2. For a randomly chosen store, what is the probability that products will be assessed as good?

1.3. If products for a store are assessed as good, what is the probability that it will be successful?

1.4. Are the events G and event S statistically independent?

1.5. Suppose that 5 store are chosen as random. What is the probability that at least one of them will be successful?

Question set 2: CI and Chebychev’s theorem

Suppose we have a random sample of size n = 100 from a population. We find that the sample mean =80, sample standard deviation s=30. The probability that the population mean μ falls into an interval between two points and b is 90%. Point a and b is symmetric to the central point of distribution.

2.1 What is the terminology for the range between point a and b?

2.2 What is the terminology for the value of point a and point b?

2.3 If the population is normally distributed, select an appropriate value from table below and calculate values of a and b. Justify your choice from the table. Explain your calculation in all necessary intermediate steps.

Positive scores in a standard normal distribution

Positive scores in a student t

distribution (d.f.=99)

α = 0.1

1.2815

α = 0.1

1.2902

α = 0.05

1.6448

α = 0.05

1.6604

2.4 (4 points) If the shape of the population distribution is unknown, How to find out the values of a and b? Explain your answer with expressions to define a and b.

Question set 3: Fuel economy problem

You are in a project studying the impact of technology innovation on fuel economy.

Specifically, you are studying the performance of vehicle, which is measured by variable milpgal as the miles per gallon the vehicle can travelA data set is obtained from collecting information through 4 companies. Variable company contains numerical values 1, 2, 3, 4 for data collected from company 1, company 2, company 3 and company 4. Company 1 and 4 are leading companies in the industry and they have adopted an innovative technology before the period of data collection. Please answer the following questions:

3.1 Explain the meaning of the following command and describe what change can be expected to the data set after executing the command:

gen inno=(company==1 | company==4)

3.2 Next, a Box-Whisker graph has been created to study the distribution of subsets data. In the box-whisker plot below, the dash line denoted with mean_ 1 refers to the mean of first subset. the solid line denoted with mean_2 refers to the mean of the second subset. A histogram has also been created to show the distribution of the same subsets.

Do you expected the two distribution of subset data to be normally distributed? Justify your answer by using evidence in the box-whisker plot and histogram.

3.3 You decided to perform Shapiro-Wilk test on both subsets and obtained the following Stata results by command bysort inno: swilk milpgal. Assuming 5% significance level, are milpgal distributions normally distributed? Justify your answer by using the Stata output.

3.4 We next calculated the confidence interval for both subsets at 95% confidence level. The Stata output is below. Is it possible that the population of two subsets milpgal have equivalent mean? Justify your answer.

Question set 4: fuel economy comparison

You are joining a project on factor study in fuel economy. The project is making good progress, where several effective factors have already been identified by using a cross-sectional data set. You are looking for other potential factors to explain the differences in miles per gallon a vehicle can travel. Variable milpgal measures the miles per gallon that a vehicle can travelVariable price measures the selling price of vehicle. You’re investigating whether on average a more expensive car can travel more miles per gallon. The data set records information collected from 4 different companies.

You start the investigation on the impact of variable price by using the following Stata commands. The output is also the following:

4.1 Explain what the Stata command shown above is trying to achieve gen Hprice=(price>r(mean))

and predict the range of values contained in variable Hprice.

Then you perform a hypothesis testing on the subsection data created from question 1. It is assumed that the variances of populations for both subsections equal.

4.2 What is the H0  and H1  in the test implemented by command ttest milpgale, by(Hprice) as shown above? Formulate H0  and H1  and interpret them.

4.3 3 cases of hypothesis testing results are produced, as shown in the last 2 lines. Set significance level to 5%. What conclusion do you arrive at with referring to each of three cases of the test? Combining results from 3 sets of tests altogether, what is your conclusion?

4.4 Based on your conclusion in question 3, will you advise to include variable Hprice into the model to help explain the change in variable milpgal? Justify your answer.

Question set 5: Flight seat overselling problem

Suppose that you’re in charge of marketing airline seats for a major carrier. You’re focusing on the flight ticket overselling problem. Four days before the flight date you have 16 seats remaining on the plane. You know from past experience that 80% of people that purchase tickets in this time period will actually show up for the flight. You are estimating the potential losses when selling 18 tickets. Set the random variable X as the number of occupied seats on the flight day.

To help this analysis, a cumulative probability table produced by Stata function binomial(n,k,p) is provided as follows, with p=0.8 and   different values of number of trials n and  number of success   k:

5.1 What distribution does the random variable X comply with?

5.2 What is the probability to have 1 empty seat? 2 empty seats? 3 empty seats and 4 empty seats on the flight day? Calculate the probabilities and demonstrate any necessary intermediate steps involved.

5.3 Graph the probability density function of the 4 scenarios based on your calculations in question (b). State the name of the variables which denote y and x axis in your graph.

5.4 You learned that the airline company on average suffers the following losses in values for this route in these 4 scenarios:

1 empty seat

2 empty seats

3 empty seats

4 empty seats

Loss in 1 £

400

780

1100

1300

What is the expected value of loss caused by having number of empty seats ranging from 1 to 4?

发表评论

电子邮件地址不会被公开。 必填项已用*标注