ECON3173 – Cross Section and Panel Data Analysis

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

ECON3173 – Cross Section and Panel Data Analysis

Individual Project: Guidelines and Questions

This document provides guidelines and questions for the Individual Project of ECON3173, which accounts for 40% of the total marks.

Honoring the precepts of academic integrity and applying its principles are fundamental responsibilities of all students and scholars at UIC. You are advised to read through the ‘UIC Guidelines for Handling Academic Dishonesty’ file on iSpace before you start your assignment. Any form of plagiarism or cheating can result in various disciplinary and corrective activities. Using generative AI tools is not allowed.

Deadline: by 20/12/2024Submission Method:

a)    Please submit  your  typing  assignment  report in a single PDF file  to Turnitin Submission Link: Reportvia iSpace. The filename of your PDF submissions should have  the  following  format: ECON3173_Project_Student  ID_Name  in  Pinyin   (e.g., ECON3173_Project_190000001_Mi Lin).

b)    Save  your  data  and .do file(s)  in a  zip  file.  Name  your zip file  as ECON3173_Project_Student ID_Name in Pinyin. Then, upload your file to‘Submission Link:  Stata  Data  and  Program’via  iSpace.  You  are  expected  to  submit  2  .do  files,

namely ParA.do and PartB.do, respectively, should be able to replicate each part of your submitted work.

c)    Use the ‘ECON3173_Individual  Project_Report Template’ file on the iSpace to input your report. Ensure you provide a question number for each part of your work.

Format Requirements

Cover page:

Please input your name and student ID on the top of the cover page of the report template, which is available on iSpace.

Word limit:

The  required  minimum word   count  is   1,500  words, with a maximum of 2,000 words in total, excluding tables, graphs, and appendices.

Referencing:

Your report should include appropriate references in  APA format to avariety of necessary literature sources and a wide- ranging bibliography of academic aspects of economics.

Font / Size:

Cambria 12 or Times New Roman 12.

Spacing / Sides:

1.0 / Single-sided / Single-line spacing between two paragraphs.

Pagination required:

Yes

Margins:

At 2.50 to both left and right, and ‘justified’ .

Part A: Imitate an existing research (30%)

Traffic crashes are the leading cause of death for Americans between the ages of 5 and 32. Through various  spending  policies,  the  federal  government  has  encouraged  states  to institute mandatory seat belt laws to reduce the number of fatalities and serious injuries. In this exercise, following Einav and Cohen (2003), you will investigate how effectively these laws increase seat belt use and reduce fatalities using the “SeatBelts.dta” dataset posted on iSpace. The data file Seatbelts contains a panel of data from 50 U.S. states plus the  District of Columbia  from 1983 through 1997.  The dataset is detailed in “Seatbelts_Description.pdf”.  It  was  used  in the  Einav  and  Cohen  (2003)  paper,  which serves as the background reading for this exercise.  Both files are available on iSpace as well.

A1. Using   OLS  to  estimate  the  effect  of  seat   belt  use  on  fatalities  by  regressing fatalityrate on sb_useagespeed65speed70ba08drinkage21, ln(income), and age. Does the estimated result suggest that increased seat belt use reduces fatalities? Report, interpret, and comment on your results. (5%)

A2. Run  a  one-way  fixed  effect model with state-fixed  effects.  Do the results  change when you add state-fixed effects? Run a two-way fixed effects model with both time and state-fixed effects. Do the results change when you add time-fixed effects plus state-fixed effects? Report, interpret, and comment on your results. (5%)

A3. Which  regression  specification  you  obtained  from  A1  and  A2  is  most  reliable? Explain why. (5%)

A4. Using the results from the two-way fixed effects model with both time and state- fixed effects, discuss the magnitude of the coefficient on sb_useage. Is it large? Small? How  many  lives  would  be  saved  if  seat  belt  use  increased  from  52%  to  90%? Illustrate your calculation and comment on your result. (5%)

A5. There  are  two  ways  that  mandatory  seat  belt  laws  are   enforced:  “Primary” enforcement means that a police officer can stop a car and ticket the driver if the  officer  observes  an  occupant  not  wearing  a  seat  belt;  “secondary”  enforcement  means that a police officer can write a ticket if an occupant is not wearing a seat belt,  but must have another reason to stop the car. In the data set, primary is a binary  variable for primary enforcement, and secondary is a binary variable for secondary  enforcement. Run a regression of sb_useage on primarysecondaryspeed65speed70ba08drinkage21, ln(income), and age, including fixed state and time effects in the  regression.  Does  primary  enforcement  lead  to  more  seat  belt  use?  What  about  secondary enforcement? Report, interpret, and comment on your results. (5%)

A6. In 2000, New Jersey changed from secondary enforcement to primary enforcement. Assume that data availability is not an issue, design a Differences-in-Differences estimation strategy to estimate the number of lives potentially saved per year by making this change. Explain your approach. (5%)

Part B: A small-scale research project – innovation (70%) Introduction:

In this project, you are invited to empirically investigate potential causality between firms’ business  environment  and  economic  performance  using  a  firm-level  dataset  from  economies  included  in  the  World  Bank  Enterprise  Survey  Data  (WBESD).  WBESD  database collects information about an economy’s business environment, how individual  firms  experience  it,  how it changes over  time, and  the various constraints to firm performance and growth, etc. The entire database is available to researchers and includes  all questions from the surveys at the firm level.

Guidelines to download and prepare data for this individual project:

a)   Please visit https://login.enterprisesurveys.org/ to register your user account for the WBESD database (see the snapshot below). Registration is free.

b)  There are a total of 97 economies represented in the World Bank Enterprise Surveys Database (WBESD). Among these, 61 economies have a time span of at least three years. For their individual projects, students are required to select data from a panel of random combinations of three different economies out of these 61 economies.

Data allocation protocol: Students are required to pick a lottery ticker number first. An “Individual Project Lottery Ticket Sign-up Sheet” will be available in iSpace from 9 p.m. on Tuesday, 26/11/2024. Please sign up for a lottery ticket number by 12 noon on Wednesday, 27/11/2024. We will operate on a 'first-come, first-served' basis.

A lucky draw will be conducted in class on Thursday, 28/11/2024, to assign specific economies to each lottery ticket number.

c)   Once registration is completed, login and download the data following the steps below:

i.     Login with yourusername and password. You will be directed to the ‘Full Survey Data’ page.

ii.     Select ‘Panel data’ under ‘Survey Type’ on the left. Ensure you are on the ‘Data by Economy’ view instead of ‘Combined Data’ . See the snapshot below.

iii.     Download  your  economies’  corresponding  data and documentation for all the available years.

For example, Afghanistan has two panel data files, one for 2005 and 2009 and the other for 2008, 2010, and 2014. Then download both of them.

iv.     Extract the data and survey documentation files into a working folder on your PC. Now the data file is ready to open in Stata.

Answer ALL of the Following Questions

Note that this is not an essay-type assignment. Please answer the questions one by one. For each question, the performance of the Stata do files accounts for 20% of the marks.

B1) Use the Stata command “append” to append data of all years and economies into a single Stata data file with panel data format. Select and rename variables in Table 1. ‘Old name’ refers to the variable name in the original dataset, while ‘New name’ is the new  corresponding name to be  defined.  Generate  a  new  variable exp_dum (export  dummy)  equals  1  if sales_exp is  positive;  otherwise,  0.  Generate  a  new variable foreign_dum (foreign  ownership  dummy)  equals  1 if foreign is positive; otherwise, 0. Generate a new variable soe_dum (state ownership dummy) equals 1 if soe is positive; otherwise, 0. (5%)

Table 1: Variable List

Survey Questions

Old name

New name

GENERAL INFORMATION

Year the survey was conducted

year

year

Panel ID (the same ID for each firm across different years)

panelid

panelid

What percentage of this firm is owned by the Government/State %

b2c

soe

What   percentage    of   this   firm    is   owned    by   Private    foreign individuals, companies, or organizations %

b2b

foreign

SALES

During  the  past  fiscal  year, what  was this establishment’s total annual sales?

d2

sales

During the past fiscal year, what percentage of this establishment’s sales were: Direct exports %

d3c

sales_exp

LABOUR and CAPITAL

Total number  of permanent, full-time workers at the  end of last fiscal year

l1

employees

During the past fiscal year, what was the net book value, i.e., the value of  assets after  depreciation,   of  the following:   Machinery, vehicles, and equipment

n6a

capital

Cost of raw materials and intermediate goods used in production in the last fiscal year

n2e

materials

BUSINESS-GOVERNMENT RELATIONS

In atypical week over the last 12 months, what percentage of total senior  management’s  time was  spent  dealing  with  requirements imposed by government regulations? %

j2

reg_time

Over   the   last    12 months,   has this    establishment   secured    a government  contract  or attempted to secure a  contract with the government? Yes/No

j6a

gov_contract

B2) Conduct exploratory data analysis for variables listed in B1), i.e., using appropriate summary statistics (e.g., observation number, mean, standard deviation, minimum and maximum values, etc.) to explain your data and make necessary comments.

(10%)

Considering total  output is  measured by Sales, labour input is measured by the total number  of employees,   capital  is  measured  by capital,  and  intermediate  inputs  are measured by materials, a production function can be written as:

sales = Acapitalα Employeesβ Materialsy                                                             (1)

where A is the total factor productivity (TFP). Based on panel data, taking logarithms on both sides, equation (1) is transformed to

ln(salesit ) = ln(A) + α ln(capitalit ) + β ln(Labourit ) + y ln(Materialsit ) + eit           (2)

B3) Based  on the variable ‘panelid’,  set the dataset in a panel format, then obtain the estimated coefficients in equation (2) by running panel data regression. Comment on  your  results,  including  a)  a  discussion  on  the  capital,  labour,  and  materials elasticities of sales, respectively, and b) a comparison between the panel two-way fixed effect and random effect model. (10%)

B4) Include  Export_dumit    as a new variable of interest in equation (2) to test if a firm’s   performance improves after entering export markets. Based on relevant economic   theories or literature, explore the data set to add appropriate control variables to   the production equation (2). Run a panel regression and interpret the results. (10%)

B5) To what extent could we use the estimated coefficient on  Export_dumit    obtained in B4) for causal inference? Explain. Illustrate an appropriate empirical strategy to make improvements if deemed required. Finally, reestimate the model based on your proposed empirical strategy, compare the results to what you have obtained in B4, and comment on the results. (10%)

B6) Explore the complete data set (i.e., do not have to be limited to the variables listed  in B1) and design an empirical model to evaluate the impact of ownership structure  on the export decision. Interpret and comment on the empirical results you obtained. (10%)

B7) Predict  firm-level  productivity  (i.e.,  ln(A) + eit ) to test the  hypothesis that good business-government relations boost productivity. Explore the complete data set (i.e., do not have to be limited to the variables listed in B1) to propose an empirical model with an appropriate empirical strategy based on relevant economic theories or  literature.  Explain  the  variable(s)  you  select  for  this  question.  Interpret  and comment on the empirical results you obtained. (15%)


发表评论

电子邮件地址不会被公开。 必填项已用*标注