CSE 101 Midterm 2 Review Problems

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

CSE 101

Midterm 2 Review Problems

1.   Rank the following functions from lowest to highest asymptotic growth rate.

1)  2n

2)  n ln(n)

3)  n

4)  2ln(n)

5)  ln(ln(n))

6)  n √n

7)  n2

8)  ln(n2)

9)  √n

Write your answer as a permutation of the set {1, 2, 3, 4, 5, 6, 7, 8, 9},  giving the corresponding line numbers of the above functions in the required order (left to right, slowest growing function to fastest growing function.)  No justifications are required.

2.   Consider the List ADT from pa5 but without the cleanup()function. Write a C++ client function with heading

void RemoveDuplicates(List& L)

that does the same thing as cleanup(), except that it does not matter where the cursor ends up.  In other words, the call RemoveDuplicates(L) will  alter List L  so that it  contains only the  first occurrence of each of its data items.   To do this, you may use all ADT operations in List.h except cleanup().

3.   Let T be a Binary Search Tree containing the keys {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.   Suppose that a pre-order tree walk prints the keys in order: 2, 1, 12, 10, 8, 7, 5, 4, 3, 6, 9, 11, 13, and that a post-order tree walk prints the keys in order: 1, 3, 4, 6, 5, 7, 9, 8, 11, 10, 13, 12, 2.   Determine the structure of T. (Note: only one of the two tree walks is really necessary since each of them uniquely determines the structure of T.)  Present your solution either by drawing a picture of the tree, or by constructing a table giving the parent of each Node.

4.   Use the TreeInsert() algorithm to insert the following keys: 6, 2, 1, 4, 10, 8, 7, 9, 12, 11, 14, 13, 15 (in order) into an initially empty BST.

a.   Draw the resulting BST

b.   Use the Delete() algorithm to delete the following keys: 8, 6, 13, 14 (in order) from the BST you drew in part (a), then draw the resulting tree.

5.   Suppose we alter the List ADT from pa5 by doing

typedef char ListElement;

at the beginning of List.h, making it a list of char instead of int.  Assume a List L consists entirely of parenthesis characters  '(' and  ')'.   The List L is called a Well Formed Formula (WFF) iff all parentheses can be matched in pairs (open and close). For instance "(()(()))" and "()()(())" are WFFs, while "(()()" and "(()))" are not. The empty List is considered to be a WFF. Write a client function with heading

bool isWFF(List L)

that returns true or false, according to whether L is or is not a WFF.  (Hint: search for adjacent matching pairs and delete them.  If L becomes empty, then return true.)

发表评论

电子邮件地址不会被公开。 必填项已用*标注