Math 121A Math for physics Sciences Homework 2

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

Math 121A  Math for physics Sciences Homework 2

I will update the homework after each lectures. It is due next Wednesday (since we have Labor day Monday)

Vector Space Problems

1. Let �⊂�3VR3 be the points that {(�1,�2,�3)∣�1+�2+�3=0}{(x1,x2,x3)x1+x2+x3=0}. Find a basis in V, and write the vector (2,−1,−1)(2,1,1) in that basis.

2. Let V as above,. Let �=�2W=R2, let �→�VW be the map of forgetting coordinate �3x3. Is this an isomorphism? What's the inverse?

3. Let V as above, and letW be the line generated by vector (1,2,3)(1,2,3). Let �:�→�f:VW be the orthogonal projection, sending v to the closest point on W. Is this a linear map? How do you show it? What's the kernel? Let �:�→�g:WV be the orthogonal projection. Is it a linear map? What's the relationship between f and g?

4. about quotient space. Let �=�2V=R2, and let W be the linear subspace generated by vector (1,2)(1,2) (i.e. the line passing through origin and (1,2)(1,2)). For �∈�vV, let [�]=�+�∈�/�[v]=v+WV/W denote the equivalence class that v belongs to, i.e., the (affine) line parallel to W and passing through v. Draw some pictures to answer these questions.

  • Is it true that [(0,0)]=[(1,2)][(0,0)]=[(1,2)]?
  • Is it true that [(1,1)]=[(0,1)][(1,1)]=[(0,1)]?

5. another important notion is dual vector space. Given a vector space V, the dual vector space is �∗=���(�,�)V=Hom(V,R), the set of linear maps from V to R (Hom is short for 'homomorphism', which means linear maps for vector spaces). For example, if �=�2V=R2, the linear functions x and y belong to �∗V, we have �∗={��+��∣�,�∈�}V={ax+bya,bR}. Here �,�x,y are basis for �∗V.

Let V be the vector space of polynomials with degree less or equal than 3. What's the dimension of V? What's the dimension of �∗V? Can you find a basis for V? A basis for �∗V?

Calculus

1. Here is claim 1+2+3+4+⋯=−1/121+2+3+4+=1/12. Show that this is wrong.

Fun fact: There is an interesting function , called Riemann Zeta function �(�)ζ(s), which for �>1s>1 can be written as �(�)=∑�=1∞1/��ζ(s)=n=11/ns. In fact �(�)ζ(s) is actually a meromorphic function of s, and �(−1)=−1/12ζ(1)=1/12.

2. Does the following series converge? Explain why.

  • ∑�=1∞1/�2n=11/n2.
  • ∑�=1∞1/�!n=11/n!
  • ∑�=1∞�2/�!n=1n2/n!

3. Let ��an be a sequence of ±1±1. Show that ∑�=1∞��/2�n=1an/2n is convergent. (Hint: absolute convergence implies convergence)

4. What is radius of convergence? Is it true that11−�=1+�+�2+⋯1x1=1+x+x2+holds for all real number �≠1x=1?

5. We know that the following series diverge1+1/2+1/3+1/4⋯.1+1/2+1/3+1/4.Question: does the following alternating series converge? Why?1−1/2+1/3−1/4+⋯11/2+1/31/4+(Optional): Fix any real number a. Show that by rearrange the order of the terms in the above alternating series, we can have the series converges to a.

6. Line integral: let γ be the straightline from (0,0)(0,0) to (1,1)(1,1). Compute the line integral∫�2��+3��.γ2dx+3dy.What if we replace γ by a curved line but still from (0,0)(0,0) to (1,1)(1,1), would the above result change? Why?

发表评论

电子邮件地址不会被公开。 必填项已用*标注