CS152 Lab 4: The Random Package and matplotlib

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due


CS152

Lab 4: The Random Package and matplotlib

The goal of this week's project is to get further experience with modules and hierarchical design. In the lab, we'll work with the Python random package and some basic capabilities of the plotting package matplotlib. And then for the project … .Penguins!!!

Lab Tasks

If you have not already done so, create a new Lab04 folder.

L1. Creating Random Numbers

In Python, we create random numbers using the random package. Start a new file, rand.py, and put your standard file header at the top. Then write:

import random

A. Write a function that generates N random numbers between 0 and 1

Define a function gen_random()that has one argument which is the number of random numbers to create.

The first step is to assign to a variable (e.g. numbers = []) an empty list.

The second step is to start a counted-for loop that executes N times. Each time through the loop, append to your numbers list the result of calling the function random.random().

The function random.random() returns a randomly generated floating-point number between and 1. It is one of the useful functions in the random package.

Finally, the function should return the list of random numbers.

B. Test the function

Define a test function. The test function should assign to a variable the result of calling

gen_random()with an argument of 10. It should then use a loop to print out the 10 numbers. Run your code and make sure it works properly.

L2. Write a function that generates N random integers between a lower bound and an upper bound

Define a function genNintegers () that has three arguments: the number of points to create, a lower bound, and an upper bound. All three arguments should be integers.

In the function, assign to a variable (e.g. numbers = []) an empty list.

Loop N times and each time through the loop append the result of calling random.randint(lowerBound,upperBound)to your numbers list.

The function random.randint(L,B) returns a randomly generated number between L, B, inclusive.

Return the number list.

Add code to your test function to call and then print out the result of calling genN integers () with arguments of 10, -10, and 10. Make sure it produces expected values.

L3. Write a function that generates N random values drawn from a normal/Gaussian distribution

Define a function genNnormal () that has three arguments: the number of points to create, a mean, and a standard deviation. The second and third arguments can be integers or floating   point values.

In the function, assign to a variable (e.g. numbers) an empty list.

Loop by the number of points to create, and each time through the loop append the result of calling random.gauss ( mean, std ) to your numbers list.

The function random.gauss ( mean, std ) returns a randomly generated number drawn from a normal or Gaussian distribution with the given mean and standard deviation.

Return the number list.

Add code to your test function to call and then print out the result of calling genNnormal () with arguments of 10, 0, and 0.2. Make sure it produces expected values.

L4. Installing and Creating plots with matplotlib

NOTE: Navigate to the install instructions matplotlib installation page.

You will need to open up a regular terminal (NOT a Python interactive shell) for installing matplotlib package for Python.

For guidance on installing on other platforms, see the matplotlib installation page. As well as a GeeksforGeeks tutorial: Pyplot in Matplotlib

Continuing with the same file, add a new import statement at the top.

import matplotlib.pyplot as plt

Now plot some of the numbers you created in the prior exercise.

In the test function, you should have three variables that all contain random numbers. One holds values between 0 and 1 (call it x), one holds values between -10 and 10 (call it y), and one

holds values distributed around zero (call it z). The following walks through the process of plotting x versus z.

1.  At the end of the test function, call the function plt.plot() with the arguments x, z, and the string 'o' (‘o’ means the points will be represented as circles). The lists x and z must have the same number of elements.

2.  After the call to plot, call the function plt.show (). Then run your code. It should create a simple plot.

3.  After the call to plot and before the call to show, you can modify aspects of the plot. For example, plt.title () sets the title to whatever string you pass in as an argument.

4.   Set the X axis label using plt.xlabel () with "X" as the argument.

5.   Set the Y axis label using plt.ylabel () with "Y" as the argument.

Now you know how to generate simple plots with an x-label, a y-label, and a title. Look at the

matplotlib documentation for PyPlot for more information on how to create more complex graphs and charts.

When you are done with the lab exercises, please begin the project.


发表评论

电子邮件地址不会被公开。 必填项已用*标注