ENGG2400 – Mechanics of Solids 1

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

ENGG2400 – Mechanics of Solids 1

T3 2019 Block Test 3

Question 1: (3 Marks)

A pressure vessel is loaded with torsional and axial loadings. A point on the inner surface of the pressure vessel experiences a stress state in the x-y plane as shown in the figure. There is also an normal stress due to the internal pressure σzz = − 100 MPa .

a) Draw the Mohr’s Circle for the stress state in the x-y plane. Use Mohr’s circle to determine:

- The principal stresses σ1 , σ2  and the angle of rotation θp to the principal axes

- The maximum shear stressτxy ,max  in the x-y plane  and the angle of rotation θs to the maximum in-plane shear axes.

Label all calculated points, intersections, diameters and angles.

b) Draw the orientation of the principal axes and maximum in-plane shear axes relative to the x-y axes. Draw the stress state of rotated material elements orientated with the principal axes and maximum in-plane shear axes. Clearly label stress magnitudes and directions.

c) Calculate the absolute maximum shear stress τ abs,max .

d) Which plane does the absolute shear stress occur in?

1-2 plane

1-3 plane

2-3 plane

1, 2 and 3 refer to the principal axes such that σ1  > σ2   > σ3

Question 2: (3 Marks)

Abeam is pin supported at and is roller supported atB. It is loaded as shown in   the   figure.    The   beam   has    a   constant    second   moment   of   area = 170 × 10−6 m and a Young’s modulus of E = 200 GPa .

a) Complete the free body diagram of the beam and calculate all support reactions

b) Write down the expression for bending moment as a function of position on the beam.
c) Circle the correct boundary conditions for this beam
d) Calculate the beam deflection as a function of position on the beam. Calculate the deflection at a position 9m to the right of
support A.

e) Which of the following curves best represent the deflection of the beam? The distance between vertical grid lines represents 1m.

Question 3: (3 Marks)

The cantilevered beam with length has a force applied to it at an angle θ= 30o  above the horizontal. The beam has constant cross-sectional and  material properties.

a) Calculate the normal force N , shear force V and bending moment M as functions of position on the beam.

b) Calculate the axial  ( U), shear ( U)and bending strain  ( U)energies for the beam.

c) Calculate the displacement ∆ of the right end of the beam in the direction of the applied force.



发表评论

电子邮件地址不会被公开。 必填项已用*标注