CS152 Project 4: Penguin Population Viability Analysis (PVA)

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due


CS152

Project 4: Penguin Population Viability Analysis (PVA)

For project 4 we're going to move to the world of ecological modeling. In particular, we're going to model the change in the population of Galapagos Penguins over time given certain ecological pressures.

Our goal is to model the risk of extinction over some number of years. The model we will use is fairly simple, but you can choose to add complexity to the model once the basic system is working.

One new aspect for this project is the use of random values in the simulation. Because the world doesn't exhibit strong regularity, we're going to model this uncertainty by using a random number generator.

For example, El Nino, an important factor in Galapagos Penguin survival, does not occur on a perfectly regular schedule, but it does tend to occur at least once every 5-7 years. We can model this by assigning a 1.0/5.0 or 1.0/7.0 probability of an El Nino to any given year.

Then, each year of the simulation, we effectively roll a 5-sided or a 7-sided die and declare an El Nino year if it comes up with a 1. If the year is an El Nino year, then the penguin population drops significantly. If it is not an El Nino year, the population sees a small amount of growth.

Because of the random variables in the model, each time we model 100 years the computer will generate a different result. In one simulation, the population may go extinct in 20 years, in another simulation it may not go extinct at all. In order to achieve a reasonable estimate of the true probability of extinction over 100 years, we have to run the simulation many, many times and aggregate the results.

For example, the probability of extinction in 100 years is the number of simulations where the  population goes extinct, divided by the total number of simulations. Researchers using PVA to evaluate the risk of extinction in actual populations might run the simulation 10,000 times or more in order to get a stable estimate of extinction risk. Stability, in this case, means that if you  run the simulation 10,000 times, then the difference between that average and the average of a different run of 10,000 simulations will be small.

To design the simulation, we're going to use a modular and hierarchical design in order to keep each function simple to write, test, and debug. By following this workflow we will maintain our momentum as developers and not get bogged down with code that does execute properly.

Outline of Project 4 Program Development

Part 1Developing a set of simulation functions

A.  Write a function to set up the parameters for the simulated population using the random module and test it. (initPopulation).

B. Write a function to simulate population in a single year and test it (simulateYear)

C. Write a function to run a single year of the simulation and test it (runSimulation)

D. Write your main ()function that takes command line arguments and tests it. Part 2Calculate the Cumulative Extinction Probability Distribution (CEPD)

A. Write a function that takes the result of your simulation and test it (computeCEPD) B. Compare the extinction distribution curves for a 3-year, a 5-year, and a 7-year El Nino cycle.

Tasks

T1. Setup

If you haven't already set yourself up for working on the project, then do so now.

Navigate to your project folder. Open VSCode and create a new file penguin.py. For this week, all of the simulation functions will be in this file, though you can use the functions in your stats.py file from Lab 3 to analyze the results, if you choose to pursue an extension that requires it.

T2. Write a function to initialize the population

Create a function initPopulation, which takes two parameters: the initial population size and the probability of an individual being female. The function should return a list of the specified size. Each entry in the list will be either an 'f' or an 'm'.

The pseudocode would be:

1.   Define a function initPopulation with two parameters (e.g. N, and probFemale)

2.   Initialize a variable (e.g. population) to the empty list.

3.   Start an indexed for loop based on the size of the population. On each iteration generate a random number using random.random(). If the value is less than the probability of an individual being female (probFemale), append an 'f' to the population list.

Otherwise, append an 'm' to the population list.

4.   Finally, return the population list.

Use the following test function to see if your initPopulation function is working properly. It should print out a list of 10 individuals with an appropriate mix of 'f' and 'm' elements. Run it a few times to convince yourself that you are getting randomized lists. If the lists are all one or the other sex then go back and review your code.

# test function for initPopulations

def test ():

pop size = 10

probFemale = 0.5

pop = initPopulation (pop size, probFemale)

print ( pop )

if __name__ == "__main__":

test()

T3. Write a function to simulate a single year

Create a function simulateYear that takes six parameters in the following order:

● pop: the population list

● elNinoProb: the probability of an El Nino

● stdRho: the growth factor in a regular year. This number is meant to allow the population to grow each year and is expected to be greater than 1.

● elNinoRho: the growth factor in an El Nino year. This number is meant to reduce the population and is therefore less than 1.

● probFemale: the probability of a new individual being female,

● maxCapacity: the max carrying capacity of the ecosystem.

The first step in the function is to determine if it is an El Nino year. Set a variable (e.g.

elNinoYear) to False. Then compare the result of random.random() to the El Nino

probability. If the random.random() result is less than the El Nino probability, then set

elNinoYear to True.The second part of the function is a loop over the existing population list. Before starting the loop, create a list called newpop and set it to the empty list. Inside the loop, implement the following algorithm given in pseudocode below:

#newpop = []

#for each penguin in the original population list

# if the length of the new population list is greater than maxCapacity

# break, since we don't want to make any more penguins

# if it is an El Nino year

# if random.random () is less than the El Nino growth/reduction factor

# append the penguin to the new population list

# else

# append the penguin to the new population list

# if random.random () is less than the standard growth factor - 1.0

# if random.random () is less than the probability of a female

# append an 'f' to the new population list

# else

# append an 'm to the new population list

#return newpop

T4Test the simulateYear function

To test your simulateYear function, add the following code to your test function. newpop = simulateYear (pop, 1.0, 1.188, 0.41, 0.5, 2000)

print ( "El Nino year" )

print ( newpop )

newpop = simulateYear (pop, 0.0, 1.188, 0.41, 0.5, 2000)

print ( "Standard year" )

print ( newpop )

You should see the population reduce to 3-6 individuals in the El Nino year and grow to 11-14 individuals in the standard year. Run it a few times to see the variation.

T5. Write a function to run a single simulation

The next step is to write the runSimulation function. This function takes in 8 parameters. You can use the definitions below:

def runSimulation( N,                               # numb of years to run the

simulation

initPopSize,                # initial population size

probFemale,               # prob a penguin is female

elNinoProb,                # prob El Nino occurs in a given

year

stdRho,                     # pop growth in non-El Nino year

elNinoRho,                 # pop growth in an El Nino year

maxCapacity,             # max carrying capacity of ecosystem

minViable ):               # min viable population

The function should initialize a population, then loop N times. Inside the loop it should call

simulateYear and assign the return value back to the population list. If, after simulating a year, the population is smaller than the minimum viable population or it consists of only one     gender, then the function should return the year of extinction. If the loop completes all N times and there is still a viable population, the function should return N.

The detailed pseudocode is below:

The function should first assign to a variable (e.g. population) the result of calling

initPopulation with the appropriate arguments. Then it should set another variable (e.g. endDate) to (the number of years to run the simulation). The variable endDate will be what the function returns.

The main part of the function should be a loop that runs times. Each time through the loop it should:

1.   call simulateYear with the appropriate arguments, assigning the result to a new list variable (e.g. newPopulation),

2.   test if there is a viable population, and

3.   assign to population the new population

A viable population must have at minViable individuals and there has to be at least one male and one female. If any of these tests fails, then set endDate to the loop variable value and

break out of the loop. The Python keyword break will cause execution to stop looping and start executing the code after the loop

If you want to view the population numbers over time, print out the length of the population list at the end of each loop.

T6. Test runSimulation

Add some test code to your test function that calls runSimulation a few times with some

appropriate arguments. Make sure the initPopSize argument is larger than the minViable argument. Using a small value for the probability of an El Nino (e.g. 0.1) should result in a return value of N (the population should survive). If you use a large probability of El Nino (e.g. 0.5) the  return value should be much less than N.

Default values for the simulation arguments are as follows:

201

Initial Population Size 500

Probability of Females 0.5

Probability of an El Nino 1.0/7.0

Growth Factor in a standard year 1.188

Growth Factor in an El Nino year 0.41

Maximum Carrying Capacity 2000

Minimum Viable Population 10

T7. Define a main function that runs many simulations

The top level function is your main function. Give it one argument, argv, which will be the list of strings from the command line.

A. Usage statement

Start the main function by testing if there are at least three arguments on the command line. The first argument will be the name of the program, the second should be the number of simulations to run, and the third should be the typical number of years between an El Nino event. If there are less than three  (len (argv) < 3), print out a usage statement and exit.

B. Extract values from the command line arguments

After the test for arguments, cast the second argument  (argv [1]) to an integer and assign it to a variable that specifies the number of simulations to run (e.g. numSim). Cast the third argument  (argv [2]) to an integer and assign it to a variable that specifies the typical number of years between an El Nino event.

C. Set up local variables

Create variables for each of the simulation parameters in the table above not already assigned and give them the default values. You should also create a variable to hold the results of the simulations and initialize it to the empty list.

D. Write the main loop that runs simulations

Loop for the number of simulations. Inside the loop, append to your result list the result of calling runSimulation with the appropriate arguments. This list will hold the year of extinction for each simulation run.

E. Calculate the probability of survival after N years

Count how many of the results in the result list are less than N (the number of years to simulate). Divide that count by the total number of simulations and print out the result. This is the overall probability that the penguins will go extinct within the next N years.

Test it: Run your program using 100 simulations and see what you get. Does it change a lot if you run it repeatedly? Run it with 1000 simulations and see if the results are more stable.

T8. Compute the Cumulative Extinction Probability Distribution

The next task is to write a function that takes the list of results, which is a set of numbers indicating the last year in which the population was viable, and convert it to a cumulative extinction probability distribution (CEPD).

The CEPD will be a list that is as long as the number of years in the simulation. Each entry Y in  the CEPD is the number of simulations where the population has gone extinct by year Y divided by the total number of simulations.

The computeCEPD function should take two arguments: the list of results from

runSimulation (a list of integers), and the number of years the simulation ran (N). The computeCEPD function has three parts.

a.   The first part is to create a list (e.g. CEPD) with N zeros. You can do this by appending N zeros to an empty list in a loop.

b.   The second part is to loop over the list of results (extinction years). If the extinction year is less than N, loop from the extinction year to N and add one to each of those entries in the CEPD list.

c.   The third part is to loop over the CEPD list and divide each entry by the length of the

extinction year results list, which is also the number of simulations. After this, return the CEPD list.

Add a call to the computeCEPD function to the end of your top level function. Then have your   top level function print out every 10th entry in the CEPD list (remember how the range function works). Run your penguin simulation 1000 times using the standard parameters. Repeat the process three times and show the results in your writeup. How much variation is there in the results?

Required plot 1: Generate three plots of the CEPD for three runs of 1000 simulations for 201 years with the default parameters.

T9. Compare 3, 5, and 7-year El Nino cycles

The final step is to use your simulation to compare the extinction distribution curves for a 3-year El Nino cycle, a 5-year El Nino cycle, and a 7-year cycle. What do your results indicate?

Required plot 2: a plot of the CEPD for the three El Nino cycle options.

Required Element 1:

Follow-up Questions

1. What is the difference between the following two code snippets?

# example 1

a = [5, 10, 15, 20]

for i in range(len(a)):

print(a[i])

# example 2

a = [5, 10, 15, 20]

for x in a:

print(x)

2. Why do we test code incrementally? Why not write all of the code and test it once?

3. Why do we use random numbers in this population model?

4. What is your favorite wild (undomesticated) animal?

Extensions

Extensions are your opportunity to customize your project, learn something else of interest to you, and improve your grade. The following are some suggested extensions, but you are free to choose your own. Be sure to describe any extensions you complete in your report.

●    Use matplotlib to automate the process of creating plots.

●    In addition to the required plots, show a plot of the population levels for a single simulation.

●   Add other model parameters to the command line. The complex version

of this extension is to have flags for your program so that the user  can use a flag, like -E, to specify a given parameter. For example, running python penguin.py -E 5 would modify the El Nino frequency, but leave all other parameters at their default values.

●    Display the CEPD data in a graph using matplotlib, or have your code write out the results as a CSV file and use a graphing program.

To write the data, adjust the code in penguin.py so that it prints out the year and CEPD for all years. Redirect the output to a .csv file. Use Excel or other software to plot the data and post the image on the wiki with a thorough description of its contents.

●    Explore variations on the model. For example, what effect on the extinction probability do you see if you adjust the number of years in the El Nino cycle? Does changing the carrying capacity to 3000, for example, modify the 100-year extinction probability for the 5 year El Nino cycle?

●    More rigorously test the variation in the simulation outcomes. Use your standard

deviation function to compare the standard deviation of the probability that the population goes extinct at a particular time. For example, consider 200 years when the El Nino cycle is 5 years. Running the simulation with numSim=100 will likely yield a larger standard deviation in the values of the CPEF at t=200 (the final year of the simulation) than running the simulation with numSim=1000 will.

Submit your code

Turn in your code by zipping the file and uploading it to Google Classroom. When submitting your code, double check the following.

1.   Is your name at the top of each Python file?

2.   Does every function have a docstring (‘’’ ‘’’) specifying what it does?

3.   Is your Lab 04 folder in your Project 04 folder?

4.   Have you checked to make sure you have included all required elements and outputs in your project report?

5.   If you have done an Extension, have you included this information in your report under the Extension heading? Even if you have not done any extensions, include a section in your report where you state this.

6.   Have you acknowledged any help you may have received from classmates, your

instructor, the TAs, or outside sources (internet, books, videos, etc.)? If you received no help at all, have you indicated that under the Sources heading of the report?

Write your project report

Reports are not included in the compressed file! Please don’t make the graders hunt for your report.

You can write your report in any word processor you like and submit a PDF document in the Google Classroom assignment folder. Or just use a Google Document format.

Review the Writeup Guidelines document.

Your intended audience for your report is your peers who are not taking CS classes.

From week to week, you can assume your audience has read your prior reports. Your goal should be to explain to peers what you accomplished in the project and to give

them a sense of how you did it. The following is a list and description of the mandatory sections you must include in your report. Do not include the descriptions in your report,  but use them as a guide in writing your report.

● Abstract

A summary of the project, in your own words. This should be no more than a few

sentences. Give the reader context and identify the key purpose of the

assignment. An abstract should define the project's key lecture concepts in your   own words for a general, non-CS audience. It should also describe the program's context and output, highlighting a couple of important algorithmic and/or scientific details. Writing an effective abstract is an important skill. Consider the following questions while writing it.

○   Does it describe the CS concepts of the project (e.g. writing well-organized and efficient code)?

○   Does it describe the specific project application (e.g. generating data)?

○   Does it describe your solution and how it was developed (e.g. what code did you write)?

○   Does it describe the results or outputs (e.g. did your code work as expected and what did the results tell you)?

○ Is it concise?

○   Are all of the terms well-defined?

○   Does it read logically and in the proper order?

● Methods

The method section should describe in clear sentences (without pasting any code) at least one example of your own computational thinking that helped you complete your project. This could involve illustrating how a key lecture concept was applied to creating an image, how you solved a challenging problem, or explaining an algorithmic feature that is essential to your program as well as why it is so essential. The explanation should be suitable for a general audience who  does not know Python.

● Results

Present your results in a clear manner using human-friendly images or graphs labeled with captions and interpreted for a general audience such as your peers not in the course. Explain, for a general, non-CS audience, what your output means and whether it makes sense.

● Reflection and Follow-up questions

Draw connections between lecture concepts utilized in this project and real-world problems that interest you. How else could these concepts apply to our everyday lives? What are some specific things you had to learn or discover in order to complete the project? Look for a set of short answer questions in this section of the report template.

● Extensions (Required even if you did not do any)

A description of any extensions you undertook, including text output or images demonstrating those extensions. If you added any modules, functions, or other design components, note their structure and the algorithms you used.

● References/Acknowledgements (Required even if there are none)

Identify your collaborators, including TAs and professors. Include in that list anyone whose code you may have seen, such as those of friends who have taken the course in a previous semester. Cite any other sources, imported libraries, or tutorials you used to complete the project.





发表评论

电子邮件地址不会被公开。 必填项已用*标注