MATH367 Specimen Class test I

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

MATH367 Specimen Class test I

Problem 1:  Tree graphs and planar graphs

1.  Describe  tree   graphs  that   correspond  to  the   Prüfer  sequence  P   = (2, 3, 4,..., n−2, n−1), with n some positive integer number.  (3 points)

2. Prove that any tree graph is a planar graph (2 points) .

3. Prove that we obtain a planar graph by adding one more edge to any tree graph (without changing the number of vertices) (2 points) .

Problem 2: Eulerian and Hamiltonian graphs

1.  Construct an Eulerian trail for the following graph:  (4 points)

2. Which tree graphs are Hamiltonian graphs?  (2 points)

Problem 3:  Minimal spanning trees and shortest-distance paths

Consider the following network N :

N consists of four vertices {s,a,b,t} and ve edges {{s,a} , {s,b} , {a,t} , {b,t} , {a,b}}   with   the   weights   wt({s,a})  = 1, wt({s,b}) = 2, wt({a,t}) = 3, wt({b,t}) = 4, wt({a,b}) = −7.

1.  List all cycles of N and their weights.  (2 points)

2.  Apply the Prim's (2 points) and the Kruskal's (2 points) algorithms to  nd the minimal spanning tree of N.  Apply Dijkstra's algorithm to   nd the shortest path between the vertices s and t  (2 points) .  If some of these algorithms are not applicable to the network N , explain why.

Problem 4:  Assignment problem

Two workers W1  and W2  are capable of performing n1  = 1 and n2  = 2 tasks, respectively.   They  need to accomplish as many tasks as possible out of the four tasks T1 , T2 , T3  and T4 .  Each task can be accomplished by one worker only. The cost of performing the task Tj  by the worker Wi  is given in the table below:

Use  a cost ow network to nd out how to accomplish the maximal  pos- sible number of tasks at the least possible cost.  (7 points)  Discuss whether your assignment is unique and justify your answer.  (2 points)





发表评论

电子邮件地址不会被公开。 必填项已用*标注