MAT 2322C: Calculus III for Engineers

MAT 2322C: Calculus III for Engineers

(Winter 2024: Jan 8—Apr 10)

Lectures: Tue. 17:30 - 18:50, STE H0104, Thu. 17:30 - 18:50, TBT 333.

Prerequisites(MAT 1322or MAT 1325or MAT 1332), (MAT 1341or CEGEP linear algebra). The coursesMAT 2322,MAT 2122, MAT 2121 cannot be combined for credits.

Text: James Stewart, Calculus. Early transcendentals. 9th edition. 8th  or earlier versions is ok.

Course description:

Extrema of functions of several variablesMultiple integration and applications. Vector fields and their derivatives. Curves. Vector differential operators. Line integrals. Surfaces and surface integrals. Theorems of Stokes, Gauss, etc.

Evaluation:

Midterm Exam 1:  Thursday, Feb 15, in class, 17:30 -

25%

Midterm Exam 2:  Thursday, March 21, in class, 17:30-

25%

Final Exam

50%

Note:

1.  If you miss a test without a valid reason, then their score is 0.

2.  If you submit a valid justification within a week before or from the date of the test, then the percentage will be added to your final exam. No make-up midterms.

3.  Please note that you must get at least 40% on the final exam to pass the course.

Calculators: Basic scientific calculators are allowed, such as the following Faculty of Science approved calculators: Texas instruments TI-30, TI-34; Casio fx-260, fx- 300.  Graphing/or programmer calculators are NOT allowed.

Checking Test/Exam Grades:

o It is your responsibility to make sure that your marks are recorded correctly by visiting Brightspace.

o The deadline to make any corrections is within one week when you receive marks.

Academic Regulations:

Academic regulations | University of Ottawa (uottawa.ca)

COPYRIGHT The materials you receive for this course are protected by copyright and to be used for this course only. You do not have permission to upload the course materials, including any lecture recordings you may have, to any website. If you require clarification, please consult your professor.

Important dates and deadlines

https://www.uottawa.ca/important-academic-dates-and-deadlines/

List of topics and suggested problems (Subject to change)

Sections

Suggested problems

13.1 Vector functions and space curves.

13.1: 1, 3, 5, 9, 11, 15, 23, 29, 36, 44

13.2 Derivatives and integral of vector functions.

13.2: 3, 5, 7, 9, 11, 15, 17, 19, 24, 27, 31, 35, 38

13.3 Arc length and curvature

13.3: 1, 3, 7, 9, 13, 18, 43, 55

14.1 Functions

14.1: 5, 9, 10, 13-22, 23-31, 45-52

14.2 Limits and continuity

14.2: 1, 3, 5-22, 25, 29, 34, 37, 40, 44

14.3 Partial Derivatives

14.3: 6, 15, 21, 24, 32, 40, 47, 55, 59

14.4 Tangent Planes and Linear Approximations

14.4: 2, 13, 16, 25

14.5 The Chain Rule

14.5: 3, 6, 10, 16, 27, 29

14.6 Directional Derivatives and the Gradient Vector

14.6: 9, 15, 21, 35, 44

14.7 Maximum and minimum values.

14.7: 1, 3, 7, 12, 15, 16, 17, 27, 29, 31, 36, 38, 41

14.8 Lagrange multipliers.

14.8: 3, 5, 9, 15, 16, 17, 18, 19, 23, 24,  43, 49, 50

15.1 Double integrals over rectangles.

15.1: 1, 4, 5, 10, 11, 13, 17, 28, 31, 36, 37, 40, 49

15.2 Double integrals over general domains.

15.2: 3, 5, 6, 7, 10, 11, 12, 13, 16, 17, 21, 23, 25, 37, 45, 52

15.3 Double integrals in polar coordinates.

15.3: 1-6, 7, 9, 12, 13, 15, 17, 21, 23, 26, 29, 40

15.4. Applications.

15.4: 2, 3, 6, 7, 9, 11, 13, 15, 21, 24

15.5 Surface area.

15.5: 1, 5, 9, 13, 23, 24

15.6 Triple integrals. Applications.

15.6: 2, 3, 4, 7, 9, 11, 13, 15, 17, 18, 25, 26, 27, 29, 33, 35, 41, 43, 45

15.7 Triple integrals in cylindrical coordinates. (9.7 Cylindrical and spherical coordinates).

15.8 Triple integrals in spherical coordinates.

15.7: 1, 2, 3, 9, 11, 15, 18, 22

15.8: 1, 3, 6, 7, 9, 11, 15, 18, 22, 25, 36, 41

15.9 Change of variables in multiple integrals.

15.9: 2, 5, 7, 9, 11, 13, 15, 19, 21, 23

16.1 Vector fields.

16.2 Line integrals.

16.1: 1, 2, 3, 5, 6, 11- 14, 21, 23, 25, 29, 31, 36

16.2: 1, 3, 4, 7, 9, 11, 12, 15, 17, 19, 21, 28, 31, 33, 39, 41, 45

16.3 Fundamental theorem for line integrals.

16.3: 3, 7, 9, 13, 15, 17, 19, 21, 23, 25, 2, 29, 35

16.4 Green's theorem.

16.4: 1, 3, 7, 9, 11, 13, 17, 19, 23-29

16.5 Curl and divergence.

16.5: 1, 2, 5, 10, 13, 15, 17, 19, 21, 23, 27, 29, 31

16.6 Parametric surfaces and their areas.

16.6: 1, 5, 7, 9, 11, 15, 17,

19, 21, 23, 27, 31, 37, 39, 41

16.7 Surface integrals.

16.8 Stokes' theorem.

16.7: 1, 2, 3, 5, 7, 9, 10, 13, 14, 17, 19, 24, 31, 42

16.8: 1, 3, 6, 8, 13, 16, 18

16.9 The divergence theorem.

16.9: 1, 3, 4, 5, 7, 9, 12, 13, 17, 19, 26, 30


发表评论

电子邮件地址不会被公开。 必填项已用*标注