FIN 320 Fall 2023 PROBLEM SET # 2

FIN 320

Fall 2023

PROBLEM SET # 2

Important 1: When you submit your solutions on Blackboard include the number oyour group on the file name as follows:

Problem_Set_2_GROUP_3.xlsx

Important 2: Submit Excel files

Important 3: Please solve each problem on a separate Excel tab

Question 1:

Consider the following scenarios for the one year return on a Stock Fund and on a Bond Fund.

Scenario

Probability

Stock Fund Return

Bond Fund Return

Recession

0.20

-21%

12%

Normal

0.60

12%

7%

Boom

0.20

30%

-8%

a)   Calculate the expected return and the standard deviation of returns of the Stock Fund and of the Bond Fund.

b)   Calculate the correlation coefficient between the Stock and the Bond Fund.

c)   Consider a portfolio that has 50% in the Stock Fund and 50% in the Bond Fund. What is the return of this portfolio in each of the three scenarios?

d)   Calculate the expected return and the standard deviation of returns for a portfolio with the 50% in the Stock Fund and 50% in the Bond Fund.

d.1) Using the answers to items a) and b)

d.2) Using the answer to item c)

Question 2:

Consider two risky assets, S and B, with the following characteristics:

E(rS)= 9% σS=20%

E(rB)=  5%, σB= 5% and ρBS= - 1

a) Is it possible to combine the two assets in a portfolio such that the portfolio has zero risk (i.e. zero standard deviation)? If so, what is the composition of the zero risk portfolio?

b) Suppose that in addition to trading in the risky assets S and B, investors can also freely buy, sell or short-sell a risk-free asset with risk-free rate rf. What must be the risk-free rate rf ?

What would happen otherwise?

Question 3:

Go to Yahoo!Finance. Download monthly prices for GE, IBM, and Exxon-Mobil stocks over the last 5 years.

a)  Use the adjusted closing prices to calculate monthly returns. Use the sample to estimate expected returns, variances, standard deviations, covariances, and correlation of returns.

b)  Annualize expected returns and variances by multiplying with 12.

c)  Annualize volatilities by multiplying with 12^0.5 .

d) Assume that stock returns over the next year are drawn from a normal distribution with the expected returns, standard deviations and correlations calculated in a. What is the probability that an equally-weighted portfolio of GE, IBM and XOM will produce a negative return over the next year?

Question 4:

Consider the following economic scenarios for the next year, with the associated returns of a Stock and a Bond portfolio.

Scenario

Economic Explanation

Probability

Return of Stock Portfolio rS

Return of Bond Portfolio rB

Moderate growth Moderate inflation

Most likely Scenario

50%

18.1%

8.4%

Strong Growth

High Inflation

High Corporate Profits

Pure Yield Curve Shifts Up 

15%

24.5%

 7.8%

Low Growth

Low Inflation

Low Corporate Profits

Pure Yield Curve Shifts Down

15%

 17.5%

24.5%

Strong Growth

Low Inflation

High Corporate Profits

Pure Yield Curve Shifts Down

10%

45.5%

11.4%

Weak Growth

High Inflation

Low Corporate Profits

Pure Yield Curve Shifts Up

10%

– 46.5%

 18.4%

a)   Calculate the expected returns of the Stock and Bond Portfolios.

b)  Calculate the standard deviations of the Stock and Bond Portfolios.

c)   Calculate the correlation between the returns on the Stock and Bond Portfolios.

d)  Consider a combined portfolio with 50% on the Stock Portfolio and 50% on the    Bond Portfolio. What is the return of this portfolio across all scenarios? From this returns, calculate the expected return and standard deviation of the combined portfolio.

e)  Using the formulas for the expected return and standard deviation of a portfolio, calculate the expected return and standard deviation of the combined portfolio with 50% in Stocks and 50% in Bonds.

f)    Suppose that the correlation coefficient between the two assets is 1, but the standard deviations are the same as above. Is it possible to combine the two assets in a portfolio such that the portfolio has zero risk (i.e. zero standard deviation)? If so, what is the composition of the zero risk portfolio?

g)   Suppose that, in addition to trading in the risky assets S and B, investors can also freely buy, sell or short-sell a risk-free asset with risk-free rate rf. What must be the risk-free rate rf ? What would happen otherwise?

发表评论

电子邮件地址不会被公开。 必填项已用*标注