MATH 377 Financial and Actuarial Modelling in R

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

MATH 377

MOCK FINAL EXAM - I

Financial and Actuarial Modelling in R

1.   An investor invests in three stocks, A, B, and C. The stocks A, B, and C have expected rates of return E[RA] = 9%, E[RB ] = 12%, and E[RC ] = 15%. The risk-free rate is 3%. The covariance matrix of the three stocks is:

RA

RB

RC

RA

0.08

0.045

0.01

RB

0.045

0.25

0.07

RC

0.01

0.07

0.06

(a) Find the mean and standard deviation of a portfolio such that the weight of stock A is twice that of stock B and twice that of stock C.              [3 marks]

(b) Write an R program that plots the opportunity set available to any investor. [6 marks]

(c) Write an R program to plot the capital market line.                        [3 marks]

(d) Write an R program to find the minimum variance portfolio.  What are the weights of stocks A, B, and C in this portfolio?      [3 marks]

2.   A stock price is currently 30.  Over each of the next two 3-week periods, it is expected to increase by 10% or decrease by 8%.  The risk-free interest rate is 6% per annum with monthly compounding during the first 3-week period and 4% per annum with weekly compounding during the second 3-week period.

(a) Write an R program that gives the binomial tree evolution of the stock price. [3 marks]

(b) Write an R program to find the initial price of a 6-week derivative that pays off max(4/1 (900 − ST/2), 0). [5 marks]

3.

(a)  Consider a 4-month European call option on a stock with a current price of 30.  The exercise price is 29, the risk free interest rate with continuous compounding is 5% per annum, and the volatility is 25% per annum. What is the option ’s price?                       [4 marks]

(b) Write an R code to plot 100 simulated trajectories of a geometric Brownian motion with an initial value of 30, a drift of 0.01875 (0.05 − 0.252 /2), and volatility of 0.25 up to time 1/3.                 [6 marks]

(c)  Generate 5000 simulations of the process in  (b) to approximate the price of the option described in (a).     [4 marks]

4.

(a)  Consider the following two vectors: height  <− c(151 , 174 , 138 , 186 , 128 , 136 , 179 , 163 , 152 , 131) weight <− c(63 , 81 , 56 , 91 , 47 , 57 , 76 , 72 , 62 , 48)

(i) Fit a linear regression model to explain the dependent variable “weight” in terms of the independent (explanatory) variable  “height.”   [4 marks]

(ii)  Create a scatter plot of “height” vs “weight” along with the regression line.                                                 [3 marks]

(iii) Predict “weight” for a value of “height” equal to 170.             [3 marks]

(b)  Consider a collective risk model S where the distribution of the frequency is Poisson with parameter 2, and the severities are exponentially distributed with mean 1/3. Write an R program to find the approximation of the CDF of S (use the rounding method to discretize the severity distribution over the interval (0, 20) with a step size of 0.1) and find the mean of S.       [5 marks]

5.

(a)  Consider the classical risk model

N(t)

U(t) = u + ct −  Xi ,    U(0) = u > 0 ,

i=1

where N(t) is a Poisson process with intensity λ and X1 , X2 , . . .  are  i.i.d. random variables independent of N(t).

The intensity of the Poisson process is λ = 2, the density of the claim amounts is given by

fX (x) = e −2x + e−x ,    x ≥ 0 ,

and the premium received per unit of time is c = 2.  For an initial surplus of u = 5:

(i) Find an upper bound for the ruin probability.

[5 marks]

(ii) Calculate the exact ruin probability.

[5 marks]

(b)  Consider the above classical risk model under proportional insurance.  Sup- pose that the relative security loading of the company in a reinsurance-free environment is θ = 10% and that the relative security loading under pro- portional reinsurance is θh   =  20%.   Write  an R program to plot the risk adjustment coefficient as a function of the proportion a.                  [8 marks]



发表评论

电子邮件地址不会被公开。 必填项已用*标注