COMP62421 Querying Data on the Web

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

COMP62421 Querying Data on the Web

Coursework Manual

On Assigned Readings

These papers provide background information of relevance to the material in the unit. In addition, the contents of these papers may be examined in the quizzes.

Week 1

Surajit Chaudhuri: An Overview of Query Optimization in Relational Systems. PODS 1998: 34-43 http://doi.acm.org/10.1145/275487.275492

Week 2

Craig Brown, Xavier Franc, Michael Paddon, Native XML Databases: Death or Coming of Age? XMLPrague 2015 Conference Proceedings, pp. 107-119.

On Coursework

There are two types of coursework in COMP62421: quizzes and lab work.

On Quizzes

•     Quizzes are done synchronously, and as a result are timetabled.

•     The topics for a quiz on a given teaching week consist of the material in the assigned articles for reading in the previous weeks, as well as all the taught content thus far in the course unit (and therefore not just  in that specific teaching week).

•     There are 4 quizzes, which run in Weeks 2 to 5.

On Duration, Question Types, and Consultation

•     Quizzes last 25 minutes.

•     They consist of five multiple choice style questions.

•     Incorrect answers do not subtract from the total.

On Lab Work

•     Lab work is associated with timetabled lab sessions.

•     The topics for lab work consist of application and exploration of the taught content in the course unit.

•     All the lab work can be carried out on departmental computers or on your own machines, though the descriptions are generally targeted at and have been tested on unix.

•     The lab machines have sqlite3 installed; if you want to do the labs that use sqlite3 (RW, QO) on a laptop, you may have to install SQLite (https://www.sqlite.org/download.html).

•     The software used in the unit uses licenses that will be suitable for public use, so you can download and install software to your personal machine. However, be aware that we may struggle to support students  with machine-specific issues.

On Lab Work’s Contribution to the Course Unit Mark

•     There are three pieces of lab work, RQ (Week 1), QO (Weeks 2-3) and SP (Weeks 4-6).

•     The coursework mark is subdivided as follows:

•     Quizzes: 10%

•     Lab RQ: 0% (so this is a formative assessment – you will be given the solutions).

•     Lab QO: 40%

•     Lab SP: 50%

•     The coursework marks, as a whole, contribute 50/100 marks towards the final course unit mark.

•     The remaining 50/100 comes from the exam.

On Deadlines

The deadlines on the lab work are as follows:

•     QO: Week 4, Thursday at 18:00

•     SP: Week 6, Friday at 18:00

On What Your Submission Consists of and Where to Upload it

The submission is always a report in PDF format. This must be such that we can open it and read it to mark it. Anything that prevents us from doing so cannot be compensated.  You should upload the report associated with each submission as a pdf document called:

_COMP62421_LW_Report

On Preparing a Report File

We expect you to format your report in a scholarly manner. For example, formal language expressions and code should be properly indented and use monospaced (i.e., fixed-width) fonts — such as Monaco, Andale Mono, Courier, etc. — and mathematical expressions should be clearly and properly written down.

In your comments, analyses, etc., be brief and to the point. There is never any need to write an essay on anything in this course unit: at most, all we are looking for is technical comments and technical arguments.

In all cases, if you believe that relevant information is missing, then use comments in your submission to make explicit any assumptions that were required for you to answer.

If your assumptions are convincing (i.e., if they are both made in response to genuine uncertainty and incompleteness and are consistent with all the information explicitly given), we will take them into account in the marking.

On Plagiarism and Working Together

You must always work individually. You must only consult and discuss things with your friends once you have gained a thorough understanding of what constitutes academic malpractice. You are not allowed to copy solutions from anyone else, or to pass solutions to anyone else, in any form (conversation, paper, electronic media, etc.), unless otherwise authorized explicitly. We will run plagiarism detection software on submissions.

Further guidance on plagiarism and cheating is available here:

https://documents.manchester.ac.uk/display.aspx?DocID=2870

Lab Work RQ

There is material provided on Blackboard to support the execution of SQL (using SQLite) and Relational Algebra (using RA).  All queries are to be written over the Mondial database, which is provided in the download.

Task 1: Write tuple-relational calculus (TRC) expressions that, upon evaluation, return the data characterized by each of the following English-language specifications:

(1)      Return the name of any country that has a lake.

(2)      Return all the available attributes on cities whose population is between 3 and 5 million inhabitants.

(3)      Return the country code and the continent of every country not in Europe or in Australia/Oceania.

(4)      Return the names of countries that also give their name to one of its own provinces.

(5)      Return the names of countries that are not landlocked (i.e., have a sea coast).

Task 2: Write relational-algebraic (RA) expressions that, upon evaluation, return the data characterized by each of the following English-language specifications.

(6)      Return the names of countries that are not landlocked (i.e., have a sea coast).

(7)      Return the names of all lakes, rivers and seas.

(8)      Return the name of the country, and the names of the organizations of which the country is a

member, for countries with Buddhist populations.

(9)      Return the names of countries that also give their name to one of its own provinces.

(10)    Return, for every river in the United Kingdom, the length of that river.

(11)    Return the names of all cities that have a population larger than that of the capital city of the country.

Task 3: Write SQL expressions that, upon evaluation, returns the data characterized by each of the following English-language specifications. Use duplicate removal where appropriate (e.g., when a duplicate is not

required in the intended answer).

(12)    Return the names of up to 10 countries and the value corresponding to half the country’s population.

(13)    Return all the information available in the City table about cities whose name is Manchester.

(14)    Return the name of cities whose name starts with the substring 'Man’ .

(15)    Return the name of the country, and the names of the organizations of which the country is a

member, for countries with Buddhist populations and organizations established after 1st December 1994.

(16)    Return the name of each country with the number of islands in it. Some Comments

In all the queries above, do not get bogged down by the complexity of the Mondial encoding of geographic   properties. Mondial is not a spatial database and lacks spatial types (and corresponding spatial operations).

For Task 1, you are expected to submit the TRC expressions only. You are not required to run the query against the data as there is no easily available TRC evaluator to use, but if you want to ensure your expression computes the intended result, consider mapping the expression into an iterative computation in your favourite language.

For Task 2, you should use the RA software to evaluate your expressions. We propose using the command line options to read the input from a file and to redirect the output to a file, as described in the download that  is available on Blackboard. Note that RA is dependent on the SQLite DBMS.

For Task 3, you should use SQLite to evaluate your expressions. Software/Data

A folder is provided in Blackboard that gives you access to relevant data and scripts.

On Scripting, Echoing and Logging

We note that familiarity with SQLite will be useful for Coursework QO.  To give an example using SQLite, let's suppose that the query to be evaluated is:

Return all the information about any 4 countries

The answer to this is:

select  *  from  country  limit  4;

You would then compose a script, let's call it Atan_Luring_LW1.sql (note the suffix), that, in this simple case, would be as follows:

--  Atan_Luring_LW1.sql

--

--  set  echoing  on .echo  on

--  set  spooling  out:  note  the  suffix .output  Atan_Luring_LW1.log

--

select  *  from  country  limit  4;

You can then start SQLite (using the sqliterc  initialization file we provided you with to normalize columns   width, etc., and run the script with the SQLite read   command, where  in the example above would be Atan_Luring_LW1.sql.

sqlite3  -init  sqliterc  mondial .db  < Atan_Luring_LW1.sql

On successful completion, the file called (in this example) Atan_Luring_LW1.log would have the following content (modulo formatting) :

select  *  from  country  limit  4;

Name               Code               Capital           Province         Area               Population

Albania

AL

Tirana

Albania

28750

2800138

Greece

GR

Athina

Attikis

131940

10816286

Macedonia

MK

Skopje

Macedonia

25333

2059794

Serbia

SRB

Beograd

Serbia

77474

7120666

In the case of the RA software:

java  -jar  ra.jar  mondial .properties  -i  Atan_Luring_LW1 . ra  -o  Atan_Luring_LW1.log

runs the RA executable (ra.jar), taking as input the query in the file Atan_Luring_LW1 . ra and writing the output to Atan_Luring_LW1.log .  The homepage of RA is:

https://users.cs.duke.edu/~junyang/ra2/

Mondial

You can find documentation about Mondial in its website.

SQLite

For SQLite, the documentation on the website is comprehensive, but if you prefer learning from books, you have free access (from an UoM IP address) to this one:

The Definitive Guide to SQLite Grant Allen, Mike Owens

ISBN: 978-1-4302-3225-4 Apress, 2010

http://link.springer.com/content/pdf/10.1007%2F978-1-4302-3226-1.pdf

Lab Work QO

This lab involves an experimental investigation into the SQLite query optimizer.  Before embarking on the experiments it will be useful to refer to the SQLite documentation:

https://www.sqlite.org/docs.html

and in particular, this section:

https://www.sqlite.org/optoverview.html

Consider, also, studying this section in detail:

https://www.sqlite.org/queryplanner-ng.html

Task 1: Write three pairs of semantically-equivalent SQL queries against the Mondial database such that:

•     in each query pair, either the two queries are syntactically distinct (but semantically equivalent, i.e., they return the same result set) and one query in the pair is optimizable by SQLite whereas the other is not;

•     or else the two queries are syntactically identical but are run under different conditions (e.g., once without access to an index, and again with access to an index)

so that, as a result, we would expect the response times in evaluating the queries in the same pair to be different. Essentially, we want to know by how much, and why.

You must:

•     produce the query pair,

•     explain which optimization/evaluation strategy you have in mind for each query in the pair,

•     record the execution times for each query in each pair,

•     discuss any execution time difference.

You must use SQLite to evaluate your expressions and obtain results for your submission.

Task 2: Summarize your investigation with a plot, accompanied by interpretation and comment, that evaluates the benefits/shortcomings of using the SQLite optimizer and evaluator.

Software/Data

A folder is provided in Blackboard that gives you access to relevant data and scripts.

Some Comments

We expect you to study the documentation, i.e., to find out about facts, notions, ideas, techniques, policies and heuristics yourself. We want to gauge how much you have learned about query optimization and execution. Some topics (like the use of indexes) haven’t been covered in detail in the course, but do some research.

By all means, ask questions in the lab session and in the discussion board, but we are asking you to think  and reflect and ask yourself questions, propose some answers, and verify whether your proposed answers are correct or not.

Note, to start with, that the goal is not for you to try and create complex (in the sense of challenging, or even tricky) queries per se, but rather to study the SQLite optimizer and identify cases where it can make a

difference in potentially speeding up a query and cases where it cannot. If you read them from this course unit’s viewpoint, the documentation on the SQLite optimizer (sometimes implicitly) describes conditions in which the optimizer can make an impact and conditions in which it cannot make an impact.

To get you started, study the conditions under which the optimizer may or may not be able to use an index.   Start by considering whether there is a substantive difference in the amount of data that would be processed if the index were used or not. Also, in the case of indexes, note that you may need to create the index yourself and run the query, then drop the index and run the query again. This is the special case in which the queries in the pair are the same but the context in which they were run (e.g., which indexes were available) is the difference.

For another example, consider how SQLite allows you to control whether or not its join ordering strategy is to be used. The optimizer has a join ordering algorithm. If you write a query that would benefit from reordering

but the query explicitly uses CROSS   JOIN, then the optimizer does not reorder. This should produce a difference, but it is not guaranteed to do so for all queries.

In short, the three query pairs are meant to be the result of your study of the effects of the SQLite query

optimizer in the sense that you create one query in which the optimizer can make a difference and another (or another execution context) in which it is unable to.

Note that one shouldn’t normally be very ambitious in terms of the impact of optimization strategies. So, an impact of an order of magnitude or more (i.e., ten, a hundred, etc., times faster) is rare, though it can

happen. More commonly, an impact of 10% or more is noteworthy. A measurable but small impact (say, of

between 5% or 10%) should perhaps be taken as encouragement for you to keep exploring, but, if you get

stuck, you can use that. An impact of less than 5% veers into noise territory, i.e., it could have been caused by extraneous load in the machine and is, therefore, less useful in the context of this lab exercise. You can  usefully run queries several times to obtain an understanding of the level of variability.  You may also find

more significant effects with larger databases, and we describe how to create larger databases that replicate the Mondial database in the Blackboard download for this lab.

What is most important is that you strive to show that you have understood the potential importance of a

query optimizer, not so much that you can demonstrate the magnitude of the impact with SQLite on queries over the Mondial data.  Therefore, consider (in your plot and your analysis) making explicit the percentage    differences in addition to the absolute times and don't necessarily expect very large percentage differences.

Note, however, that if you were to produce three pairs of queries that are simply instances of the same

hypotheses (e.g., '"The availability of indexes allows the optimizer to generate more efficient plans.") you

would lose out on some marks. Contrast the case above with one in which you explore different optimization strategies that are based on indexing (e.g., one might be the case of complex predicates that prevent the

optimizer from taking advantage of indexes, another the case where the availability of an index allows the

optimizer to select a more efficient physical operator, etc.). In this example, the hypotheses are different, and the corresponding queries aim to trigger different behaviours in the optimizer, and hence merit more marks.

Your submission will be a report containing the pairs, the explanation of the optimizations you have in mind, and the plots with interpretation and comment.

Task 1: Query Analysis:

The report should be structured with a section for each pair of queries that includes:

•    The pair of queries. The queries should be in a form that can easily be copied and pasted into a script, in case we want to run it.

•    An explanation that describes the features of the SQLite optimizer and evaluator that are being investigated, and the impact of these on the times observed.

•     Evidence that has been collected that the pair of queries provide different execution times.

Task 2: Reflection:

•    At least one plot that provides information on the approaches to evaluation pursued for Task 1.

•    A discussion of the plot, the information that was used in the experiment, what can and can’t be observed from this information, and what other information might be useful.

Thus, the discussion in Task 1 relates to the specific queries, and the discussion in Task 2 seeks to draw more general lessons from your overall experience, in the light of the information in the plot.

The marks are allocated 75% to Task 1 and 25% to Task 2. The total length of the report should be no longer than 2000 words.

On Plotting, Interpreting and Commenting on Experimental Results

You are doing a study in which you measure the response time of queries. So, what goes in the Y axis? And you're plotting the response time for various queries, which come in pairs. So, what goes in the X axis? In

other words, think about this as an opportunity for you to exercise/acquire basic transferable skills in doing empirical explorations of system performance that might be useful in non-database settings.

To throw further light on what you’re expected to do when you’re asked (above) to explain the optimization you have in mind, the starting point for you is to think of these tasks as being grounded on the notion of

hypothesis testing.

So, you state what you expect to happen given some initial conditions and then you take measurements to see whether the actual measurements obtained provide evidence one way or the other.

To produce a plot, you can use a spreadsheet program, or else a program like gnuplot. For this course unit, the plots can take the form of a bar chart with each query corresponding to a bar (paired with another, in

some cases). Always label the axes, and, if pertinent, provide the unit of measurement (in timings, this is typically seconds).

Beware extremes of range in the Y-axis, otherwise you could find yourself producing visually misleading

plots. This means that your analyses may require you to produce additional zoomed-in plots that adjust the X and Y axes to a narrower, and/or shorter, range in one of the axis, or both, in order to focus on and highlight  interesting similarities or interesting differences, divergences, or contrasts.

In your comments, make a point of thinking about one to three most important findings that result from the experiment. For example:

The SQLite optimizer consistently improved performance by at least one order of magnitude.

Whenever possible aim to highlight similarities and contrasts. Whenever possible aim to present absolute values but also percentages. For example, not only:

The optimized query took 3ms while the non-optimized query took 3.5ms.

but also

The non-optimized query, therefore, took approximately 17% longer than the optimized one.

Your comments should avoid simply reading the values off the graphs. For example, don’t simply write In the first pair, the non-optimized query took 3.5ms.

the reader can do that without your help (unless you plot is poorly presented, which is another, serious, matter).

Instead, aim to link the results with what you are learning in the course. For example,

The use of both join reordering and indexing in the optimized query results seems to produce less significant reductions in response time than one might have expected, one reason for which might be the peculiar

distribution of the data, something that would need to be investigated further.

When reporting times, you should provide information about the setup of the experiment, including the

database size, the software version, and information about the environment used.  For example, here’s a pretty complete specification of a (hypothetical) underlying hardware/software environment:

These measurements were taken in a MacBook Air, 1.8 GHz Intel Core i7 with 4GB 1333 MHz DDR3 with 251 GB Flash Storage running OS X Yosemite V 10.10.5 and SQLite version 3.8.11.1 2015-07-29 20:00:57.

You may not have as much information, but provide as much as you can on the CPU, the primary memory, the secondary memory, the operating system and the DBMS you’re using.

Sometimes, a lot of time may be spent in printing results. For exercises in which the result is not of special interest, only the timings are, you should switch off the echoing in your script.

Furthermore, because of hot-cold effects (i.e., full v. empty buffers, on-the-fly indexing, etc.), when taking

measurements of query response time, it is good practice to (close and re-)open the database anew before running each query, and then run each query four times at least, discarding the first and averaging the last  three to obtain the value you plot.

If running on a public machine, to check whether there are other users logged into a machine, and thus

potentially interfering with measured times, log into it and issue the who command on a shell: it lists the login names of every used logged into the machine.

When explaining how results have been obtained, it may be useful to use the SQLite explain query plan command.  The

.eqp  on

command switches on explanation, and will provide information on how a query is to be evaluated.  For example:

sqlite> .eqp on

sqlite> select * from country limit 4;

QUERY PLAN

`--SCAN TABLE country


发表评论

电子邮件地址不会被公开。 必填项已用*标注