DATA1001: Foundations of Data Science

DATA1001: Foundations of Data Science

Semester 1, 2023 [Normal day] - Camperdown/Darlington, Sydney

Overview

DATA1001 is a foundational unit in the Data Science major. The unit focuses on developing critical and statistical thinking skills for all students. Does mobile phone usage increase the incidence of brain tumours? What is the public's attitude to shark baiting following a fatal attack? Statistics is the science of decision making, essential in every industry and undergirds all research that relies on data. Students will use problems and data from the physical, health, life and social sciences to develop adaptive problem solving skills in a team setting. Taught interactively with embedded technology, DATA1001 develops critical thinking and skills to problem-solve with data. It is the prerequisite for DATA2002.

Unit details and rules

Unit code DATA1001
Academic unit Mathematics and Statistics Academic Operations
Credit points 6
Prohibitions 
DATA1901 or MATH1005 or MATH1905 or MATH1015 or MATH1115 or ENVX1001 or ENVX1002 or ECMT1010 or BUSS1020 or STAT1021
Prerequisites 
None
Corequisites 
None
Available to study abroad and exchange students

Yes

Teaching staff

Coordinator Diana Warren, [email protected]
Lecturer(s) Diana Warren, [email protected]

Assessment

Type Description Weight Due Length
Supervised exam 
Final exam
Exam testing statistical thinking with given R Output.
60% Formal exam period 2 hours
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9
Assignment Project 1
A data project based on given data.
0% Week 04
Due date: 17 Mar 2023 at 23:59
Closing date: 17 Mar 2023
pdf (c250 words), 2 x html files
Outcomes assessed: LO1 LO2 LO3 LO9
Assignment group assignment Project 2
A data project based on your own survey data.
15% Week 08
Due date: 21 Apr 2023 at 23:59
Closing date: 02 May 2023
video (2mins); html file (c650 words)
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO9 LO10
Assignment Project 3
A data project based on client data.
15% Week 12
Due date: 19 May 2023 at 23:59
Closing date: 29 May 2023
html file (c650 words)
Outcomes assessed: LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9
Small test Evaluate Quizzes
To review learning of the week's topic.
8% Weekly 30mins (weeks 1-5, 7-12)
Outcomes assessed: LO1 LO9 LO8 LO7 LO6 LO5 LO4 LO3 LO2
Participation Labs
Participation in lab classes
2% Weekly 2hrs/week
Outcomes assessed: LO10
group assignment = group assignment?

Assessment summary

  • Evaluate Quizzes: The  Evaluate Quizzes are randomised quizzes on Canvas. They are designed to help you review your learning of the week’s topic. They are worth 8%, and due at 23:59pm each Sunday night in weeks 1-5 and 7-12. The best 10 of your 11 Quizzes will count. If you miss a quiz, it is not eligible for special consideration. Instead, the better mark principle will be used for the total marks on the Quizzes. This means that the total quiz mark counts if and only if it is better than or equal to 8% of your exam mark. If your total quiz mark is less than 8% of your exam mark, then 8% of your exam mark will be used instead. This allows you to improve in the exam.

  • Projects: The data projects are designed to develop your statistical thinking and computational skills. They must be submitted electronically, as an HTML file via the DATA1001 Canvas site by the deadline. It is your responsibility to check that your project has been submitted correctly, otherwise it will not be marked. 

  • Final exam: The final exam for this unit is compulsory and must be attempted. Failure to attempt the final exam will result in an AF grade for the course. If a second replacement exam is required, this exam may be delivered via an alternative assessment method, such as a viva voce (oral exam). The alternative assessment will meet the same learning outcomes as the original exam. The format of the alternative assessment will be determined by the unit coordinator.

  • Participation mark: This is a satisfactory/non-satisfactory mark assessing whether or not you participate in class activities during the labs. It is 0.25 marks per lab class up to 8 labs (there are 12 labs).

Late submission

In accordance with University policy, these penalties apply when written work is submitted after 11:59pm on the due date:

  • Deduction of 5% of the maximum mark for each calendar day after the due date.
  • After ten calendar days late, a mark of zero will be awarded.

Academic integrity

The Current Student website  provides information on academic integrity and the resources available to all students. The University expects students and staff to act ethically and honestly and will treat all allegations of academic integrity breaches seriously.  

We use similarity detection software to detect potential instances of plagiarism or other forms of academic integrity breach. If such matches indicate evidence of plagiarism or other forms of academic integrity breaches, your teacher is required to report your work for further investigation.

You may only use artificial intelligence and writing assistance tools in assessment tasks if you are permitted to by your unit coordinator, and if you do use them, you must also acknowledge this in your work, either in a footnote or an acknowledgement section.

Studiosity is permitted for postgraduate units unless otherwise indicated by the unit coordinator. The use of this service must be acknowledged in your submission.

Learning support

Simple extensions

If you encounter a problem submitting your work on time, you may be able to apply for an extension of five calendar days through a simple extension.  The application process will be different depending on the type of assessment and extensions cannot be granted for some assessment types like exams.

Special consideration

If exceptional circumstances mean you can’t complete an assessment, you need consideration for a longer period of time, or if you have essential commitments which impact your performance in an assessment, you may be eligible for special consideration or special arrangements.

Special consideration applications will not be affected by a simple extension application.

Using AI responsibly

Co-created with students, AI in Education includes lots of helpful examples of how students use generative AI tools to support their learning. It explains how generative AI works, the different tools available and how to use them responsibly and productively.

Weekly schedule

WK Topic Learning activity Learning outcomes
Week 01 Design of experiments Lecture and tutorial (5 hr) LO1 LO2 LO9 LO10
Week 02 Data & graphical summaries Lecture and tutorial (5 hr) LO3
Week 03 Numerical summaries Lecture and tutorial (5 hr) LO3
Week 04 Normal model Lecture and tutorial (5 hr) LO4
Week 05 Linear model Lecture and tutorial (5 hr) LO5
Week 06 Project Preparation Week Project (5 hr) LO1 LO2 LO3 LO4 LO5 LO9 LO10
Week 07 Understanding chance Lecture and tutorial (5 hr) LO6
Week 08 Chance variability (The Box Model) Lecture and tutorial (5 hr) LO6
Week 09 Sample surveys Lecture and tutorial (5 hr) LO6
Week 10 Hypothesis testing Lecture and tutorial (5 hr) LO7 LO8
Week 11 Tests for a mean Lecture and tutorial (5 hr) LO7 LO8
Week 12 Tests for a relationship Lecture and tutorial (5 hr) LO7 LO8

Attendance and class requirements

  • Lecture attendance: You are expected to attend lectures, either face-face or livestream, or by catching up, in a timely manner, through the recordings in Canvas.
  • Lab attendance: Labs (one x 2 hours per week) start in Week 1. You must attend the Lab given on your personal timetable. Attendance at labs and participation will be recorded to determine the participation mark. Your attendance will not be recorded unless you attend the Lab in which you are enrolled. We strongly recommend you attend Labs regularly to keep up with the material and to engage with the Lab questions.

Study commitment

Typically, there is a minimum expectation of 1.5-2 hours of student effort per week per credit point for units of study offered over a full semester. For a 6 credit point unit, this equates to roughly 120-150 hours of student effort in total.

Required readings

For optional extra reading, see Statistics (4th Edition) – Freedman, Pisani, and Purves (2007). An e-text version is available.

Learning outcomes

Learning outcomes are what students know, understand and are able to do on completion of a unit of study. They are aligned with the University’s graduate qualities and are assessed as part of the curriculum.

At the completion of this unit, you should be able to:

  • LO1. articulate the importance of statistics in a data-rich world, including current challenges such as ethics, privacy and big data
  • LO2. identify the study design behind a dataset and how the study design affects context specific outcomes
  • LO3. produce, interpret and compare graphical and numerical summaries, using base R and ggplot
  • LO4. apply the normal approximation to data, with consideration of measurement error
  • LO5. model and explain the relationship between 2 variables using linear regression
  • LO6. use the box model to describe chance and chance variability, including sample surveys and the central limit theorem
  • LO7. given real multivariate data and a problem, formulate an appropriate hypothesis and perform a range of hypothesis tests
  • LO8. interpret the p-value, conscious of the various pitfalls associated with testing
  • LO9. critique the use of statistics in media and research papers in a wide variety of data contexts, with attention to confounding and bias
  • LO10. perform data exploration in a team, and communicate the findings via oral presentations and reproducible reports, with interrogation.

Responding to student feedback

This section outlines changes made to this unit following staff and student reviews.

Small lab participation mark added with a consequent reduction in the quiz weightings. No changes have been made since this unit was last offered.

Additional information

  • Lectures: The Monday Intro Lecture is face-face and streamed live. The Friday Revision Lecture is on Zoom, as it involves demonstration of computation. Links are found in Canvas.
  • Labs: Labs start in week 1.
  • Unit material: All learning activities are found in Canvas.
  • Ed Discussion Board: https://edstem.org

Work, health and safety

We are governed by the Work Health and Safety Act 2011, Work Health and Safety Regulation 2011 and Codes of Practice. Penalties for non-compliance have increased. Everyone has a responsibility for health and safety at work. The University’s Work Health and Safety policy explains the responsibilities and expectations of workers and others, and the procedures for managing WHS risks associated with University activities.

发表评论

电子邮件地址不会被公开。 必填项已用*标注