MATH 4300/6300, GRADUATE ALGEBRA I, FALL 2024

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due


MATH 4300/6300, GRADUATE ALGEBRA I, FALL 2024

Homework 4, due October 24, 2024

Solve the following problems from Dummit and Foote: §4.3: 8,13,    §4.5:  5,17

Additional exercises

A1 Show that A5  is simple by following these steps:

(a) Show that An  is generated by 3-cycles for n ≥ 3, and that An  is generated by products of two disjoint transpositions (that is, by elements with cycle types 22 1n-4) when n ≥ 5.

(b) Show that any two 3-cycles are conjugate inside of An  whenever n ≥ 5.

(c) Conclude that A5  is simple (hint: show that any non-trivial normal subgroup contains a 3-cycle).

A2   (a)  Solve problem 5.4.5 from Dummit and Foote  (hint:  you can use the fact that  An   is generated by 3-cycles which you showed in the problem above).

(b) In 5 (c) you proved that An  is simple for n = 5.  In this problem, assuming the more general result that An  is simple for all n ≥ 5 and using part (a) of this problem, conclude that Sn  isn’t solvable when n ≥ 5. 

(As we shall see when we get to Galois Theory, this is closely related to the fact that polynomials of degrees ≥ 5 aren’t solvable by radicals.)

A3 Denote by Aut(G) the group of automorphisms of a group G, that is, isomorphisms from G to itself, under function composition.  Find (and prove your answer) the automorphism groups Aut(Z/5Z) and Aut(Z/2Z × Z/2Z).

A4 Suppose that H and N are groups, and that ϕ : H → Aut(N) is a homomorphism.  Show that

if β ∈ Aut(H), then

N o ϕ H ∼= N o ϕ◦β H.

A5 Classify all groups of order 20.  (Hint:  Use the Recognition Theorem for semidirect products and run through the possibilities for the corresponding group and automorphism group, and for the possible images of the corresponding homomorphisms. Use the last two problems.)

发表评论

电子邮件地址不会被公开。 必填项已用*标注