Math 1C (MW) Winter 2024

Math 1C (MW)

Winter 2024

Problem Set 2: Sections 1.3, 1.4

(10 points)

Directions : Carefully write up your solutions to this problem set independently. Your solutions should not only demonstrate your understanding of the material, but also your ability to express the correct solution in writing in such a way that another person can make sense of it easily, including features such as clearly defined variables, well drawn and labeled figures, all steps shown in a clear and logical way, final answer clearly identified, etc. In grading this set, I will check the problem set for completeness, some of the problems for correctness, as well as how well the set is written up.

Problem Sets Submission Guidelines (from the Syllabus):

Write out the problems neatly on separate paper, or on a blank tablet file. There is not enough room on the Problem Set PDF.

You are encouraged to discuss the problems with your classmates, but you must write up your own solutions independentlyNever copy anyone's work for any reason! Any instances of copying will lead to a grade of '0' on the affected Problem Set.

Do the problems in ordershowing all work neatlyclearly and completely.

Label each problem clearly – use a highlighter to mark the numberor put a box around it so it's easy to find. You dont need to write the question,just fully-worked out solutions.

Don't squeeze a lot of work into a small amount of spaceLeave some white space around your solutions for brief comments.

Write your solutions out in full detail, as modeled in the textbook and in lectures. You should also draw well-labeled and appropriately scaled diagrams and graphs when relevant.

Submit the Problem Set on paper in class. Alternatively, you may submit it as a single PDF document on Canvas. Use a scanning app such as Genius Scan. Your scanned copy must be legible and have correct    orientation.

Problem sets are due on Problem sets are due on Monday (see calendar) at the start of class. You can have a 24-hour extension with 10% penalty.

1.    What does the Divergence Test say about the convergence of the following series?

2.    Use the Integral Test to determine whether the following series converge.

3.    Express  as a p-series and determine if it converges.

4.    Consider the series .

a.    Use the Remainder Estimate from the Integral Test to find the value of N so that the remainder SN  is estimates the series within 0.0001 of the actual answer.

b.    Notice that  is a geometric series, so you can evaluate its sum exactly. Do that and check if your

answer to part a looks correct.

5.    Use the Direct Comparison Test to determine if the following series converge.


发表评论

电子邮件地址不会被公开。 必填项已用*标注