BSD131 Business Analytics

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

Business Analytics Assessment Portfolio

1. Task Description

This assessment has four parts aimed at guiding you through the CRSP-DM process: research component, a descriptive statistics component, some analytics and a final conclusion. All four parts are to be answered.

2. Background

Researchers are interested in determining the spending habits of1000 students across various demographic groups and academic backgrounds. A survey was undertaken to collect data on age, gender, year in school, major, monthly income, financial aid received, and expenses in different spending categories. Spending categories include tuition, housing, food, transportation, books & supplies, entertainment, personal care, technology, health & wellness, and miscellaneous expenses. Additionally, the dataset includes the preferred payment method for each student.

3. Data Key

The definitions of each of the data columns is as follows:

• Age: Age of the student (in years)

• Gender: Gender of the student (Male,FemaleNon-binary)

• Year in School: Year of study (Freshman, Sophomore, Junior, Senior)

• MajorField of study or major

• Monthly IncomeMonthly income of the student (in dollars)

• Financial AidFinancial aid received by the student (in dollars)

• TuitionExpenses for tuition (in dollars)

• HousingExpenses for housing (in dollars)

• FoodExpenses for food (in dollars)

• TransportationExpenses for transportation (in dollars)

• Books SuppliesExpenses for books and supplies (in dollars)

• EntertainmentExpenses for entertainment (in dollars)

• Personal CareExpenses for personal care items (in dollars)

• Technology: Expenses for technology (in dollars)

• Health & WellnessExpenses for health and wellness (in dollars)

• MiscellaneousMiscellaneous expenses (in dollars)

• Preferred Payment MethodPreferred payment method (Cash, Credit/Debit Card, Mobile Payment App)

Part A: Explain & Understand the Process of the CRSP-DM Model                         (15  marks)

1.   What  is  the  importance of defining business objectives at the beginning of a data mining project?

2. Why is data cleaning and pre-processing important in the data mining process?

3.   What are the key considerations when selecting a modelling technique?

4. Discuss the importance of model evaluation and validation.

5.   What are the challenges associated with deploying a data mining solution in a real- world scenario?

Part B: Data Preparation and Descriptive Statistics                                                     (20 marks)

Using the dataset supplied.

1.   What questions would the researchers have regarding this dataset?

2. Are there any issues with the data or other variables that could be collected to help answer the researchers’ questions?

3. Are there any unusual observations in the data set? Identify their values and any potential problems that they could cause  (Hint:  think of the results that could be affected)

4. Prepare a one page dashboard (box plotstime series plotbar charts and any relevant tablesthat can be used to describe the main features of the dataset.

Part C: Statistical Analysis of the Data                                                                        (30 marks)

1. What  is the relationship between  Age and  Monthly  Income? This  could help understand if there's a correlation between age and earning potential.

2. How does the major that a student is taking relate to Monthly Income? This could reveal whether there is a premium of an income as a function of the major that the student is undertaking.

3. Is there a relationship between Major and Monthly Income? Exploring whether certain fields of study lead to higher incomes.

4. What factors influence Tuition expenses? Analysing how variables like Financial Aid and Year in School impact tuition costs.

5. Does Preferred Payment Method relate to any other variablesInvestigating whether payment preferences are associated with demographic or financial factors.

6. How do various expenses (e.g., Books & Supplies, Entertainment) relate to each otherUnderstanding spending patterns and potential trade-offs between different categories.

7. Can we predict Total Expenses based on individual spending categoriesBuilding a model to estimate total expenses based on the breakdown of spending across different categories.

8. Does Financial Aid impact the relationship between Income and Expenses? Exploring whether financial aid mitigates the impact of income on expenditure patterns.

9. How do Health & Wellness expenses vary across different demographics? Investigating whether certain groups spend more on health-related items.

10. What is the impact of Age, Gender, and Major on Technology expenses? Exploring how demographic and academic factors influence technology spending habits.

Part D: Final Conclusions                                                                                             (35 marks)

Provide a comprehensive analysis of key insights derived from the dataset, spanning demographic information, academic standing, income, expenses, and payment preferences. Your response should encompass a detailed examination of the data  trends,  highlighting notable correlationsissuesand potential implications for any decision-making and strategic planning to better support students(600 words)





发表评论

电子邮件地址不会被公开。 必填项已用*标注