STAT3016/6016 - Introduction to Bayesian Data Analysis

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due


Research School of Finance, Actuarial Studies and Statistics

Test 1 - Practice Paper C

STAT3016/6016 - Introduction to Bayesian Data Analysis

Problem 1 [8 marks]

The Poisson-Gamma distribution is sometimes used as the sampling model assumption for observed count data that shows more dispersion than predicted under a Poisson model. Consider the data model PoissonGamma(a, b) (i = 1, ..., n). The probability density function of the Poisson-Gamma distribution is

where a > 0 and b > 0

Suppose that the parameters (a, b) are assigned the joint non-informative prior distribution proportional to 1/(ab)2 .

(a)  [1 mark] Is the joint non-informative prior distribution p(a, b) / 1/(ab)2                                                                       a proper or improper prior distribution? Give a reason for your answer.

(b)  [1 mark] Suppose we consider transforming the parameters by taking the natural logarithm of a and b respectively. Define θ 1  = loge a and θ2  = loge b. Suggest one reason why such a transformation might be of interest.

(c)  [2 marks] Derive the prior density in terms of (θ1 , θ2). That is, findp(θ1 , θ2).  [Hint: you will need to apply the method of transformations technique for a bivariate density to derive the joint prior density of the transformed parameters]

(d)  [2 marks] Derive the joint posterior distribution p(θ1 , θ2 jy1, ..., yn) up to a proportionality constant (that is, ignoring any normalising constant).

(e)  [1 mark] The joint posterior density in part (d) is not a standard density that can be sampled directly from. What approximation approach could you use to obtain 1000 posterior draws of (θ1 , θ2 )?   (Note, you only need to provide the name of the approximation method, not describe how you would implement it)

(f)  [1  mark] Suppose you have generated 1000 posterior draws of (θ1 , θ2) from the target posterior density derived in part (d). Describe how you would use the simulated posterior sample to obtain 90% interval estimates for the parameters a and b.

Problem 2 [7 marks]

In the recent literature, the Poisson distribution has been used to model COVID-19 death counts.  Valid estimation of the death rate relies on the availability of accurate data on COVID-19 death counts. 

In some regions in the world, the accuracy of reported COVID-19 death counts is questionable. We are going to build a Bayesian model to estimate the death rate parameter due to COVID-19 using a Poisson sampling model but also allow for possible under-reporting of death counts.

Let y1, ..., yn  be the reported daily death counts for Region A for n diferent days. Let z1 , ..., zn  be the true (unreported) death counts, the sampling model assumption is Pois(λ). (Note, in this question we assume there is no over-reporting of death counts, just under-reporting so yi ≤ zi.)

(a)  [2 marks] Assume yi  = zi   (i = 1, ..., n).  So there is no under-reporting of death counts. Define a prior distribution for λ and derive the posterior distribution of λ with your chosen prior.  (Note, you do not need to provide specific hyperparameter values in your chosen prior assumption).

(b)  [3 marks] Now we want to adjust our model for the possibility of under-reporting. The true rate of under-reporting is not known but it is assumed that the reported death count yi  is at least 80% of the true death count zi  (for i = 1, ..., n).  That is, the under-reporting rate is at most 20%.

Give the posterior distribution of λ up to a proportionality constant  (that is, ignoring any nor- malising constant), under this revised model

(c)  [2  marks]  Describe in words how we could use the posterior distribution in  (b) to  predict the unobserved true death counts zi.






发表评论

电子邮件地址不会被公开。 必填项已用*标注