Economics S3412 INTRO TO ECONOMETRICS

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

Department of Economics

Economics S3412

Summer 2019

Midterm Exam

Question 1 (30 points):

You wish to examine the relationship between the height of a person and his/her parents. You do this by collecting data from 310 individuals and their parents, and estimate the following relationship: height = 19.60 + 0.73×parh, (8.20)  (0.10) with R²=0.45 and SER=2.0. Here, height is the height of students in inches, and parh is the average of the parental heights. Values in parentheses are standard errors.

(a)   [6 pt] State formally the hypothesis that parents' heights have no impact on their child's height. Test the hypothesis at a 5% level and conclude.

(b)    [6 pt] Interpret the values of R² and SER. Can you reject the null hypothesis that the regression R² is zero?

(c)    [6 pt] Construct a 95% confidence interval of the expected impact of a two inches increase in the average of parental height.

(d)  If children, on average, were expected to be of the same height as their parents, then this would imply two hypotheses, one for the slope and one for the intercept.

(i) [6 pt] What should the null hypothesis be for the intercept? Calculate the relevant t- statistic and carry out the hypothesis test at the 1% and 5% level. Conclude.

(ii) [6 pt] What should the null hypothesis be for the slope? Calculate the relevant t-statistic and carry out the hypothesis test at the 1% and 5% level. Conclude.

Question 2 (24 points):

Consider following data on average hourly earnings.

Variable name:

Description:

Measurement unit:

ahe

Average Hourly Earnings

$ per hour

female

=1 for females =0 for males

binary variable

age

Age of the worker

Years

yreduc

Education level of the worker

Years

northeast

=1 if worker works in

Northeast, =0 otherwise

binary variable

south

=1 if worker works in South, =0 otherwise

binary variable

west

=1 if worker works in West, =0 otherwise

binary variable

midwest

=1 if worker works in Midwest, =0 otherwise

binary variable

Regression 1:

. reg ahe female age yrseduc northeast south west, r
Linear regression Number of obs = 61395
F( 6, 61388) = 2867.14
Prob > F = 0.0000
R-squared = 0.2514
Root MSE = 8.7624
------------------------------------------------------------------------------
| Robust
ahe | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
female | -4.235319 .0700801 -60.44 0.000 -4.372676 -4.097962
age | .1562465 .0032308 48.36 0.000 .1499141 .1625789
yrseduc | 1.741244 .015819 110.07 0.000 1.710239 1.772249
northeast | 1.288082 .1071386 12.02 0.000 1.07809 1.498074
south | .0360917 .0928028 0.39 0.697 -.145802 .2179853
west | .8062087 .099917 8.07 0.000 .610371 1.002046
_cons | -10.36609 .2512495 -41.26 0.000 -10.85854 -9.873639
------------------------------------------------------------------------------

Regression 2:

. reg ahe female age yrseduc northeast south midwest, r
Linear regression Number of obs = 61395
F( 6, 61388) = 2867.14
Prob > F = 0.0000
R-squared = 0.2514
Root MSE = 8.7624
------------------------------------------------------------------------------
| Robust
ahe | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
female | -4.235319 .0700801 -60.44 0.000 -4.372676 -4.097962
age | .1562465 .0032308 48.36 0.000 .1499141 .1625789
yrseduc | 1.741244 .015819 110.07 0.000 1.710239 1.772249
northeast | .4818733 .1105724 4.36 0.000 .2651512 .6985954
south | -.770117 .0963105 -8.00 0.000 -.9588858 -.5813482
midwest | -.8062087 .099917 -8.07 0.000 -1.002046 -.610371
_cons | -9.55988 .247275 -38.66 0.000 -10.04454 -9.07522

-------------------------------------------------------------------------------

(a) [4 pt] Write regression 2 in an equation form (use 2 decimals points only)

(b) [4 pt] Interpret the coefficient on yrseduc.

(c) [4 pt] Is the binary variable south significant in Regression 1. Support your answer.

(d) [4 pt] South is significant in one regression and not significant in the other. What is the reason for this?

(e) [4 pt] Interpret RT  in regression 2.

(f) [4 pt] There are 4 regional binary variables. What happens if we include all four in a regression? Explain your answer.

Question 3 (20 points):

Consider the following regression:

Y = β"  + β1X1  + βTXT  + β/X/  + u

Suppose you need to test the following hypotheses, write the “artificial regression” (fooling Stata) that you need to run for each case. Be specific in terms of new variables you need to  generate and the null hypothesis you need to run

(a) H" :β1  + βT  = 1

(b) H" :β1  = 3β/

Question 4 (26 points):

This dataset contains data from a random sample of high school seniors interviewed in 1980 and re-interviewed in 1986. In this exercise you will use this data set to investigate the relationship between the number of completed years of education for young adults and the distance from each student's high school to the nearest four-year college. The variable ed corresponds to years of education and dist is the distance to the nearest college and it is measured in tens of miles (For example dist = 3 means that the high school of the senior is 30 miles from the nearest college). Variables momcoll and dadcoll are binary variables that are equal to 1 if mom (dad) went to college and zero otherwise. Tuition is average tuition.

Regression 1:

. corr ed dist momcoll dadcoll, r
option r not allowed
r(198);
. reg ed dist, r
Linear regression Number of obs = 179
F( 1, 3794) = 29.83
Prob > F = 0.0000
R-squared = 0.0074
Root MSE = 1.8074
------------------------------------------------------------------------------
| Robust
ed | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dist | -.0733727 .0134334 -5.46 0.000 -.0997101 -.0470353
_cons | 13.95586 .0378112 369.09 0.000 13.88172 14.02999
------------------------------------------------------------------------------

Regression 2:

. reg ed dist momcoll dadcoll, r
Linear regression Number of obs = 179
F( 3, 3792) = 148.03
Prob > F = 0.0000
R-squared = 0.1015
Root MSE = 1.7201
------------------------------------------------------------------------------
| Robust
ed | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dist | -.0425729 .0127553 -3.34 0.001 -.0675809 -.0175649
momcoll | .6622005 .0911811 7.26 0.000 .4834317 .8409692
dadcoll | 1.043357 .0792637 13.16 0.000 .8879532 1.19876
_cons | 13.59963 .0399515 340.40 0.000 13.5213 13.67796
------------------------------------------------------------------------------

Regression 3:

. reg ed dist momcoll dadcoll tuition, r
Linear regression Number of obs = 179
F( 4, 3791) = 112.23
Prob > F = 0.0000
R-squared = 0.1022
Root MSE = 1.7197
------------------------------------------------------------------------------
| Robust
ed | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dist | -.0383628 .0130324 -2.94 0.003 -.063914 -.0128115
momcoll | .6615515 .0913085 7.25 0.000 .4825329 .8405701
dadcoll | 1.037448 .0792244 13.10 0.000 .8821211 1.192774
tuition | .1704097 .0991967 1.72 0.086 -.0240743 .3648937
_cons | 13.43805 .1019174 131.85 0.000 13.23823 13.63786

------------------------------------------------------------------------------

(a) [6p] Use regression 2: A student’s high school was 18 miles from the nearest college and both her parents went to college. Estimate the number of years of schooling completed.

(b) [6p] Use regression 1: Compute the 99% confidence interval for the difference in the predicted years of education between a high school senior who is 93 miles to the nearest college and another student who attends a high school that shares a campus with a college. Explain what your solution means in one sentence.

(c) [6p] Is tuition an important predictor of education? Support your answer.

(d) [8p] Is tuition jointly significant with parents education variables? How would you test this? Show your work. Be specific about which regression(s) you must use. (You can    assume homoscedasticity here)

发表评论

电子邮件地址不会被公开。 必填项已用*标注