STAT0031 Applied Bayesian MethodsAssessment

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

Specific information for this piece of coursework

• Answer ALL questions.

• Students must work alone.

• AI tools cannot be used.

• You may submit only one answer to each question.

• The total number of marks is 50.

• The numbers in square brackets indicate the relative weights attached to each part question.

• Marks are awarded not only for a final answer but also for the clarity and coherence of your solution. Do not include large amounts of R output.

• Your  answers should be submitted  as one pdf document  (no larger than  100MB) through the submission link on the STAT0031 moodle page, within the  ‘In-course Assessment’ section. Your answers may include hand-written and/or type sections.

• You must complete an ICA cover sheet to include as the first page of your submitted document.  The cover sheet can be found within the ‘In-course Assessment’ section of the STAT0031 moodle page.

• Your answers will be marked anonymously.  Please DO NOT include your name in any submitted material.

• You may use your course materials to answer questions.

• You may contact the course lecturer to ask questions concerning the ICA using the ‘In-course assessment discussion forum’ on the course moodle page. Please note, the lecturer will limit the amount of help ofered to students and cannot check answers (or part-answers) or give detailed guidance.

You may use the following notation and results:

The Poisson distribution, Poisson(λ), has probability mass function

where λ > 0. The mean is λ .

The Gamma distribution, Gamma(Q, β), has probability density function

where Q > 0 and β > 0.  The mean is Q/β and the variance is Q/β2.

A multinational electrical components manufacturer wants to limit the number of faulty components that it produces. The company chooses C factories for the experiment. At each   factory, B large batches of components are tested. The number of faulty components in the   i-th batch at the j-th factory is Yi,j . Let Y = (Y1,1, . . . , YB,1, Y1,2, . . . , YB,2, . . . , Y1,C, . . . , YB,C ). The data can be downloaded in the file faulty_comp . txt from the ICA section of the   STAT0031 Moodle page and contains results for 10 batches taken at 60 factories.

The company’s Bayesian statistician proposes the model

Yi,jjθj  ~ Poisson(θj ),        i = 1, 2, . . . , B,    j = 1, 2, . . . , C

where Yi,j  are independent given θj  and

θj  i..d.  Gamma(Q, β),        j = 1, 2, . . . , C.


1. Choose appropriate hyperpriors for α and β and briefly justify your choice.            [3]

2. Derive the full conditional distribution of θj .            [6]


3. Use NIMBLE to implement a Gibbs sampler to sample from the posterior distribution of this model with the data in the file faulty_comp . txt. In your answer include all R code needed to run the sampler with two chains and to monitor the chains for Q and β , i.e.  all steps needed to use the function nimbleMCMC.                            [13]

4. Draw trace plots and densities of Q and β using the first 1000 iterations of your Gibbs sampler and comment on the convergence and mixing.                                     [4]

5. Decide on an appropriate burn-in (using graphs of the Gelman-Rubin diagnostic) and a suitable run length to answer the next question (question 6) (briefly justify your choices).                                                           [7]

6. Use your code to provide estimates (by reporting the posterior mean and a 95% central credible interval for each parameter) of the following:

7. The company’s Bayesian statistician is worried that some batches have been incor- rectly tested.  She proposes extending the model by introducing the parameter Zi,j which indicates whether the i-th batch at the j-th factory was accurately tested (Zi,j  = 0) or inaccurately tested (Zi,j  = 1). The new model is

Yi,jjθj , Zi,j  ~ Poisson((1 + 2Zi,j )θj ),        i = 1, 2, . . . , B,    j = 1, 2, . . . , C

Zi,j  ~ Bernoulli(φ),        i = 1, 2, . . . , B,    j = 1, 2, . . . , C

θj  ~ Gamma(2, β),        j = 1, 2, . . . , C

β ~ Gamma(1, 0.001)

(a) Choose a prior for φ and extend your NIMBLE code in Question 3 to sample from the posterior of this model with the data in file faulty_comp . txt.  You should only include the model definition (i.e. the nimbleCode part).           [4]

(b) Consider the first 3 factories (j = 1; 2; 3) and use your model and MCMC output to decide which batches are faulty. Briefly justify your answer.                   [7]

发表评论

电子邮件地址不会被公开。 必填项已用*标注