FN3142 Quantitative Finance

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

PRELIMINARY EXAM 2023

MODULE CODE FN3142

MODULE TITLE  :        Quantitative Finance

Question 1



Recall that the probability density function for a normally distributed random variable, with mean μ and variance σ2  is:

(a)    Show that a stationary GARCH(1,1) model can be re-written as a function of the unconditional variance and the deviations of the lagged conditional variance and lagged squared residual from the unconditional variance. 40 marks

(b)    Now assume that xt  is conditionally normally distributed N(0, o2)   where . Write down the  log-likelihood function for this  model given a sample of data (x1; x2; …; xT ). 40 marks

(c)    Describe and explain how we can obtain estimates of   (o,a, p)   for   the GARCH(1,1) model and discuss any issues that arise. 20 marks

Total = 100 marks


Question 2

Suppose that  for a given set of data  VaR  forecasts   are   calculated  with   historical simulation and GARCH methods.

(a)        Show how to construct a sequence of  ‘hit’  variables    and    for testing the accuracy of the VaR forecasts. 40 marks

(b)        The following regression was run (standard errors are in parentheses below the parameter estimates):

Hits=0.095+ ur

(0.025)

Hit fdR ci=-0.2825+ ur

(0.35)

Explain how the above information can be used to test the accuracy of the VaR forecasts from these two models. 40 marks

(c)         Describe a method based on the chi-squared statistic that can be used to test for the serial correlation in hits. 20 marks

Total = 100 marks

Question 3

(a)         Describe how one can test  forecast optimality  with  a  Mincer-Zarnowitz regression? 40 marks

(b)        Consider a forecast of a variable, Yt. You have 100 observations of and  Yt and you run the following regression:

The following results are obtained:

Estimate

std error

t-statistic

β0

-0.008

0.0052

-2.3329

β1

1.6135

1.0399

0.1468

(i)         What can be inferred from this output? 20 marks

(ii)        What hypothesis do you need to test in relation to a Mincer-Zarnowitz regression and what is your test and conclusion? 40 marks Total = 100 marks

Question 4

(a)        What is the “efficient market hypothesis” ? 30 marks

(b)        Discuss two of  the  modifications/extensions/refinements  of  the original definition of the efficient market hypothesis. 40 marks

(c)         How does “collective data snooping” relate to the efficient market hypothesis? 30 marks

Total = 100 marks


发表评论

电子邮件地址不会被公开。 必填项已用*标注