IEDA4520 Numerical Methods for Financial Engineering

Hello, if you have any need, please feel free to consult us, this is my wechat: wx91due

IEDA4520 Numerical Methods for Financial Engineering 

Topics 

• Monte Carlo simulation 

– Principles of MC methods and derivatives pricing 

– Generating sample paths 

– Variance reduction techniques 

– Estimation sensitivities 

– Nested simulation for risk management 

• Machine learning methods 

– CAPM and multi-factor models 

– Regularized linear regression, tree-based methods, kernel methods 

– Applications in asset pricing 

• Time series models 

– Exponential smoothing 

– Autogressive models 

– Moving average models 

Programming We will be using R for instruction, but Python is also acceptable for homework assignments and projects.

Reference Books 

• Paul Glasserman (2003). Monte Carlo Methods in Financial Engineering, Springer. 

• Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2021). An Introduction to Statistical Learning, 2nd edition, Springer. (https://www.statlearning.com/) 

• Rob J. Hyndman and George Athanasopoulos (2021). Forecasting: Principles and Practice, 3nd edition, Otexts. (https://otexts.com/fpp3/) 

Assessment 

• Homework assignments (30%) 

• Midterm exam (30%) 

• Group project (40%) 

Logistics 

• Lectures: Monday and Wednesday 9:00–10:20am, Room 5508 (Lift 25-26) 

• Tutorials: Tuesday (once every two weeks, 6 times in total) 4:30–5:20pm, Room 3207 (Lift 21)

发表评论

电子邮件地址不会被公开。 必填项已用*标注